%0 Articles %T Towards an enhanced understanding of airborne LiDAR measurements of forest vegetation %A Hovi, Aarne %D 2015 %J Dissertationes Forestales %V 2015 %N 200 %R doi:10.14214/df.200 %U http://dissertationesforestales.fi/article/1985 %X This thesis presents basic research on how airborne LiDAR measurements of forest vegetation are influenced by the interplay of the geometric-optical properties of vegetation, sensor function and acquisition settings. Within the work, examining the potential of waveform (WF) recording sensors was of particular interest. Study I focused upon discrete return LiDAR measurements of understory trees. It showed that transmission losses influenced the intensity of observations and echo triggering probabilities, and also skewed the distribution of echoes towards those triggered by highly reflective or dense targets. The intensity data were of low value for species identification, but the abundance of understory trees could be predicted based on echo height distributions. In study II, a method of close-range terrestrial photogrammetry was developed. Images were shown as being useful for visualizations and even the geometric quality control of LiDAR data. The strength of backscattering was shown to correlate with the projected area extracted from the images. In study III, a LiDAR simulation model was developed and validated against real measurements. The model was able to be used for sensitivity analyses to illustrate how plant structure or different pulse properties influence the WF data. Both simulated and real data showed that WF data were able to capture small-scale variations in the structural and optical properties of juvenile forest vegetation. Study IV illustrated the potential of WF data in the species classification of larger trees. The WF features that separated tree species were also dependent on other variables such as tree size and phenology. Inherent between-tree differences in structure were quantified and the effects of pulse density on the features were examined. Overall, the thesis provides basic findings on how LiDAR pulses interact with forest vegetation, and serves to link theory with real observations. The results contribute to an improved understanding of LiDAR measurements and their limitations, and thus provide support for further improvements in both data interpretation methods and specific sensor design.