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ABSTRACT 

Accurate forest structural type (FST) assessment provides a valuable support tool to 

distinguish the different structures in forest stands, achieve sustainable forest management 

and formulate effective decisions. Data from four research sites within three biogeographical 

regions – Boreal, Mediterranean and Atlantic – were used in this study, and reliable 

methodologies were developed for FST assessment. First, the Gini coefficient (𝐺𝐶) of tree 

size inequality was used for the structural characterisation, and the effects of plot size, stand 

density and point density of airborne laser scanning (ALS) on the ALS-assisted 𝐺𝐶 

estimations were evaluated for the Boreal region. Second, four forest structural attributes – 

quadratic mean diameter (𝑄𝑀𝐷), 𝐺𝐶, basal area larger than the mean (𝐵𝐴𝐿𝑀) and stand 

density (𝑁) – from the three biogeographical regions were used to develop region-

independent methods for FST assessment. Lastly, a threshold value to represent maximum 

entropy was determined and was used to classify the various FST directly from ALS data 

using L-coefficient of variation and L-skewness of ALS echo heights. Aboveground biomass 

(AGB) was predicted for each FST and was compared with the AGB predictions without pre-

stratification. The results showed that (a) plot size had a greater effect on the ALS-assisted 

𝐺𝐶 estimation compared to stand size and point density, and that 250–450 m2 plot size (radius 

9–12 m for circular plots) is the optimal plot size for reliable ALS-assisted 𝐺𝐶 estimations, 

(b) 𝐺𝐶 and 𝐵𝐴𝐿𝑀 are the most reliable bivariate descriptors for FST assessment, and single 

storey, multi-storey and reversed-J type forest structures can be separated by lower, medium 

and upper 𝐺𝐶 and 𝐵𝐴𝐿𝑀 values,  respectively, while 𝑄𝑀𝐷 and 𝑁 are relevant for the 

separation of young/mature and sparse/dense subtypes, and (c) based on the mathematical 

proofs, the threshold values calculated from ALS echo heights and tree basal areas to 

represent maximum entropy should be 0.33 and 0.50, respectively. Moderate improvements 

were observed in the AGB predictions from FST classified directly from ALS data compared 

to the full dataset but critical differences were identified in the selection of ALS metrics by 

the prediction models. For example, higher percentiles were more relevant in uneven-sized 

structures and open canopy areas, while cover metrics and average percentiles were important 

in the even-sized structures and closed canopy areas. Thus, these results are very useful in 

improving our understanding of the relationships that underpin the choice of ALS predictors 

in structurally complex forests. 
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AGB   Aboveground biomass 
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𝐵𝐴𝐿𝑀  Basal area larger than mean 
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DTM  Digital terrain model 

FST  Forest structural types 

𝐺𝐶  Gini coefficient 

GEDI   Global Ecosystem Dynamics Investigation 

HCA  Hierarchal clustering analysis 

InSAR  Interferometric synthetic aperture radar 

ITD  Individual tree detection 

kNN  k-nearest neighbour 

LiDAR  Light detection and ranging 

MD  Mean difference 

𝑄𝑀𝐷  Quadratic mean diameter 

𝑅𝑀𝑆𝐷  Root mean square difference 

SSR  Sum of square ratio 

UAV  Unmanned aerial vehicles 
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1 INTRODUCTION 

1.1 Background  

Forest ecosystems are generally described by three main characteristics: composition, 

function and structure (Franklin 1986). Woody species and various biodiversity variables 

determine the composition, the rate of ecological processes, such as carbon sequestration, 

nutrient cycling and species interactions are depicted by function, and the physical 

characteristics and forest components represent the structure of the forest. All three 

characteristics are important for forest management and mapping (Latifi 2012). The structural 

heterogeneity of a forest is a multi-dimensional term and further consists of three main 

components (Maltamo et al. 2005). 

• Vertical component is “a bottom-to-top configuration of the aboveground vegetation 

within a forest stand” (Brokaw and Lent 1999), for example, understorey vegetation and 

the number of tree layers/storeys (single storey, two-storeys and multi-storeys). Different 

vertical structures can be produced by different soil types, climate and tree species, and 

varies among stands.  

• Horizontal component is the spatial distribution of vegetation (Moss 2012). 

• Species richness is the total individual species per unit area (Magurran 2005; Pascual et 

al. 2008). However, when evaluating the structural variability, it can be interpreted as the 

total number of diameter at breast height (𝑑𝑏ℎ) or height classes (Lexerød and Eid 2006).  

Thus, a forest structure is the arrangement and distribution of different tree layers/storeys 

and variation in species, age and diameter classes (Smith 1997). It is important to evaluate 

forest structural variations as they create spatial variation in light availability and affect the 

growth and mortality of seedlings and saplings (Montgomery and Chazdon 2001; Donato et 

al. 2012). Forest structures also affect the wildlife habitat (food availability, nesting, resting, 

basking and perching) and the distribution of animal prey (Bell et al. 1991; Hyde et al. 2006), 

plant habitats (old and damaged trees provide habitats for epiphytic bryophytes and lichens) 

(Fritz and Brunet 2010), biodiversity (Lelli et al. 2019), long-term biomass predictions (Clark 

and Clark 2000) and carbon storage (Gove et al. 1995; Marvin et al. 2014). Within stands, 

the structural components vary in terms of height, canopy, branches and species type, and it 

is essential to develop objective quantitative approaches using concise indicators that 

accurately describe the structural heterogeneity. This would provide valuable support tools 

to (a) distinguish between the different structures in forest stands, (b) encourage sustainable 

forest management, and (c) promote effective decision making (Bergeron et al. 2002; 

Coomes and Allen 2007a). 

1.2 Approaches and indicators for the evaluation of forest structural diversity 

Disparate approaches are available in the literature to describe the complex forest structures 

and the possible changes that result from natural (growth and mortality) or anthropogenic 

activities (harvesting) (Pommerening 2002). The definition of forest structure is not explicit 

as with other forest attributes (e.g. diameter, basal area, dominant height, biomass) and it 

depends on the observer and the application (Maltamo et al. 2005). These approaches include 
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tree diameter distributions (Aguirre et al. 2003), age of the forest stand (Spies and Franklin 

1991), stand density (Shupe and Marsh 2004) and developmental stage (Valbuena et al. 

2013). Similar differences also exist in the quantitative assessment of forest structures 

(Valbuena et al. 2014). These scientific approaches make it possible to establish, manage and 

maintain complex forest structures and to achieve sustainability in forest management and 

planning. Although these approaches are based on small-scale datasets and can only provide 

variability within a given data range, in practice, they are particularly important when applied 

in situ in forests.  

According to McElhinny et al. (2005), various distance-dependent (spatial) and distance-

independent (non-spatial) attributes that could be used to evaluate the structural heterogeneity 

of a forest include:  

1. Abundance. All common attributes that can be calculated from a given forest stand are 

included in this category, such as stand density (𝑁; stems ha-1), quadratic mean diameter 

(𝑄𝑀𝐷; cm), biomass, volume, basal area and dominant height. In operational airborne 

laser scanning (ALS) forest inventories, these attributes have been well studied (e.g. 

Maltamo et al. 2014).  

2. Horizontal structure: This category includes all distance-dependent functions that 

describe the positional dispersion of components in a population, for example, nearest 

neighbour analysis (Valbuena 2015), and pair correlation functions (Pommerening 2002). 

These functions are used to determine variability in the spatial positions of the trees. The 

indicators included in this category are valuable and could be estimated from ALS data, 

but they are beyond the scope of this Ph.D. dissertation.  

3. Differentiation: All distance-independent attributes that compare the relative amount and 

proportion of variables in a population are included in this category. Differentiation could 

either be horizontal or vertical when it is based on tree 𝑑𝑏ℎ or height, respectively. 

Similarly, various biodiversity indicators have been developed to describe species 

richness and their relative abundance, dominance, diversity and homogeneity (Magurran 

2004), but they have also been applied to evaluate forest structural diversity. For the latter, 

richness describes the number of height or diameter classes, and abundance refers to the 

relative proportion of stems, basal area, biomass or volume (Pommerening 2002). Popular 

indicators that are used to evaluate species richness, dominance, diversity and homogeneity 

are shown in Table 1. Pommerening (2002) and Valbuena (2015) have provided a detailed 

overview of the various indicators and, based on their reviews, the most suitable indicators 

that have been used in this research are presented in more detail in the following sections. 

1.2.1 Gini coefficient of tree size inequality 

The Gini coefficient (𝐺𝐶) was originally developed by Gini (1921) to evaluate inequality in 

income distribution. Due to its robust statistical properties, researchers highlighted its 

usefulness in other fields, such as variability in wastewater discharge (Sun et al. 2010), 

variation in land uses (Zheng et al. 2013), microbial diversity (Harch et al. 1997; Cai et al. 

2019) and inequality in the quality of health (Asada 2005). 
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Table 1. Summary of the popular indicators used for the species richness, dominance, 
diversity and homogeneity/inequality assessment. 

Indicator Assessment References 

 

Margalef (𝐷𝑀𝑔)  

 

Species richness 

Clifford and Stephenson (1975); 

Lexerød and Eid (2006) 

 

Menhinick (𝐷𝑀𝑛) 

 

Whittaker (1977) 

 

Berger-Parker index 

(𝐷𝐵𝑃) 

 

Dominance 

 

Berger and Parker (1970); Lexerød 

and Eid (2006) 

 

Simpson index (𝐷𝑆𝑖) / 

Simpson evenness 

(𝐸1/𝐷) 

 

 

 

 

 

 

 

Diversity 

Simpson 1949; Smith and Wilson 

(1996); Lexerød and Eid (2006) 

 

McIntosh (𝐷𝑀𝐼)/ 

McIntosh evenness 

(𝐸𝑀𝐼) 

 

McIntosh (1967); Lexerød and Eid 

(2006) 

Shannon Index (𝐻′)/ 

Shannon evenness 

(𝐽′) 

Shannon (1948); MacArthur and 

MacArthur (1961); Neumann and 

Starlinger (2001); Gove et al. (1995); 

Rouvinen and Kuuluaainen (2005); 

O’Hara et al. (2007); Motz et al. 

(2010); von Gadow et al. (2012) 

 

 

de Camino 

homogeneity (𝐶𝐻) 

 

Homogeneity/Inequality 

de Camino (1976); Bachofen and 

Zingg (2001) 

Structural index 

based on variance 

(𝑆𝑇𝑉𝐼) 

Staudhammer and LeMay (2001) 

 

In plant sciences, 𝐺𝐶 has been applied, for example, when evaluating inequality in plant 

size (Weiner and Solbrig 1984; Knox et al. 1989), successional stages (Valbuena et al. 2013) 

or competition (Cordonnier and Kunstler 2015). In forest sciences, 𝐺𝐶 is used to appraise 

inequality among trees sizes growing in a forest area (Weiner and Thomas 1986) and is 

calculated as follows (Glasser 1962): 

𝐺𝐶 =  
𝑛

(𝑛−1)

∑ 𝑛
𝑖=1  ∑ |𝑔𝑖−𝑔𝑗|𝑛

𝑗=1

2𝑛2�̅�
      (1) 

where, 𝑛 represents the total number of trees, �̅� is the mean basal area, and 𝑔𝑖 and 𝑔𝑗 are the 

basal areas of the 𝑖th and jth trees. 
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Thus, 𝐺𝐶 describes the shape of tree diameter distribution, which is influenced by tree 

interaction and competition (Valbuena et al. 2016a), discriminates between stands with 

different diameter distributions (Cordonnier and Kunstler 2015) and provides logical ranking 

for different forest structural types (FST) (Lexerød and Eid 2006; Lei et al. 2009; Adhikari 

et al. 2020). The 𝐺𝐶 values range from 0 to 1 (perfect equality to maximum inequality) (Gini 

1921), while Valbuena et al. (2012) argue that 0.50 represents maximum entropy and the 

boundary line between even-sized and uneven-sized forest structures. In practice, 𝐺𝐶 values 

< 0.50, close to 0.50 or much > 0.50 demonstrate normal distribution found in even-sized 

stands (Coomes and Allen 2007b), irregular size distribution (Duduman 2009) and reversed-

J shaped distributions, respectively (Valbuena et al. 2013).  

1.2.2 Basal area larger than the mean  

Basal area larger than the mean (𝐵𝐴𝐿𝑀) is an indicator of the structural heterogeneity of a 

forest and had been largely ignored by the scientific community until Gove (2004) 

demonstrated its usefulness as a structural guide for the decision-making process in the 

prescription of silvicultural activities (Ginrich 1967). It is calculated as the sum of basal area 

(𝐵𝐴: m2 ha-1) of all trees whose diameter is > the quadratic mean diameter (𝑄𝑀𝐷; cm), as 

shown in Figure 1 (Gove 2004). 𝐵𝐴𝐿𝑀 describes the skewness of the tree diameter 

distribution and high 𝐵𝐴𝐿𝑀 values indicate competitive conditions that exist in the closed 

canopies dominated by mature trees. In contrast, lower 𝐵𝐴𝐿𝑀 values denote open canopies 

with dense understorey ingrowths because the proportion of trees with basal areas > 𝑄𝑀𝐷 

increases, for example, in reversed-J type forest structures. It can also be used to assess the 

relative dominance of tree layers, whether the biomass is stored in one or many vegetation 

layers/storeys, and the ecology of species with a preference for forests with single storey or 

multi-storeys structures (Mononen et al. 2018). Valbuena (2015) has postulated that 𝐵𝐴𝐿𝑀, 
together with the 𝐺𝐶 of tree size inequality, could be used as an independent bivariate 

descriptor to fully describe forest structures, and indicate whether tree interactions are 

dominated by symmetric (resource depletion) or asymmetric competition (resource pre-

emption). 

1.2.3 Quadratic mean diameter and stand density 

Two other common forest descriptors that describe the location and density of diameter 

distributions are 𝑄𝑀𝐷 and 𝑁 (Gove 2004). These descriptors are crucial in forest structure 

characterisation. The 𝑄𝑀𝐷 can be defined as the 𝑑𝑏ℎ of a tree that has an average basal area, 

while 𝑁 is the stem number per unit area (Curtis 1982; Curtis and Marshall 2000). These 

descriptors are useful in determining the occurrence of mortality and the need for thinning or 

planting in forest stands, determination of aboveground biomass (Vincent et al. 2014), 

influence of fragmentation on species and forest structure (Echeverría et al. 2007), the 

maximum limits of density and the development of stand density management diagrams, 

which are used to illustrate the relationships between density, mortality and yield throughout 

the stand development period. These descriptors help to minimise the trees competition for 

resources and optimise the wildlife habitat by regulating the density of stems and their spatial 

arrangement (Newton 1997). 

 

 

 



15 

 

Figure 1. Graphical representation (shaded region) of basal area larger than the mean 

(𝐵𝐴𝐿𝑀).  

1.3 Assessment of forest structural attributes from ALS  

Airborne laser scanning (ALS) produces three-dimensional (3D) canopy information and is 

considered as a highly effective tool because it provides numerous opportunities to monitor 

forest stands and obtain reliable results of forest structural properties (Gobakken and Nasset 

2008; Latifi 2012). In forest monitoring, detailed canopy information is more useful than 

other remote sensing approaches (Maltamo et al. 2006). The ALS-derived metrics describe 

the key characteristics of a forest and are valuable for the prediction and monitoring of 

various attributes, such as tree species (Van Aardt et al. 2008), height (Maltamo et al. 2004), 

diameter distribution (Räty et al. 2018), volume (Næsset, 1997), spatial patterns of the trees 

(Packalen et al. 2013), structural complexity of the forests (Valbuena et al. 2013), biomass 

and carbon stocks (Næsset and Gobakken 2008; Valbuena et al. 2017a), and wildlife habitats 

(Hagar et al. 2020). Moreover, ALS data is also reliable for the evaluation of canopy changes 

and to compare different forest areas (McInerney et al. 2010). ALS-based retrieval and 

inventory of these structural attributes can be accomplished by two main approaches. 
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1.3.1 Area-based approach 

In the area-based approach (ABA), the ALS metrics that describe the vegetation components 

are derived from a given field plot or grid cell and are then linked with the forest attributes 

derived from the same field plot (Maltamo et al. 2014, Chapter 1). ALS metrics, such as 

dominant tree species or mean height and height percentiles are used as predictors and forest 

attributes are used as response variables (Yu et al. 2010). Several studies have used ABA to 

describe the relationship between forest variables and ALS metrics. These include the 

prediction of 𝑑𝑏ℎ, basal area, volume, biomass or height using linear regression (Means et 

al. 2000; Næsset 2002), non-linear regression (Packalén et al. 2011) or non-parametric 

approaches (Packalén and Maltamo 2006; Yu et al. 2010; Andersen et al. 2011; Räty et al. 

2020). Some studies have also identified  the factors that affect the performance of ABA, 

such as plot size (Gobakken and Næsset 2008), sample size (Junttila et al. 2013), errors in 

plot positions (Gobakken and Næsset 2009; Rana et al. 2014), and the resolution of the cell 

(Packalen et al. 2019). However, this method is most often applied in operational forest 

inventories that employ ALS data (Maltamo et al. 2014), and is more flexible and robust for 

diameter predictions, for example, in boreal managed forests dominated by coniferous 

species (Räty et al. 2020).  

1.3.2 Individual tree detection approach 

In the individual tree detection (ITD) approach, the individual treetops are detected and a set 

of allometric models is then used for features extraction and tree attribute measurements 

(Maltamo et al. 2014, Chapter 1), which can later be aggregated to the plot or stand level. In 

these models, tree height and crown dimensions are used as inputs (Yu et al. 2010). The ITD 

approach depends on the canopy-height model, which is obtained by interpolating ALS 

heights. However, not all trees can be detected with the ITD approach as the performance of 

this method depends on the detection algorithm and its parameterisation (Kaartinen et al. 

2012), and on forest conditions, such as stand density, canopy closure and the spatial 

arrangement of trees (Vauhkonen et al. 2012). Nevertheless, ITD is a suitable alternative to 

extract and monitor forest attributes at a much finer spatial scale (Kukkonen et al. 2019). 

1.4 Existing gaps in forest structural heterogeneity assessments 

1.4.1 Factors that influence estimation of the Gini coefficient 

The Gini coefficient of tree size inequality is one of the best indicators for the evaluation of 

the structural heterogeneity of a forest (Lei et al. 2009; Valbuena et al. 2013), although the 

ALS-assisted 𝐺𝐶 estimates are affected by plot size and stand density (Matos 2014). In forest 

science, circular or rectangular sample plots are typically used to measure forest attributes 

(Whittaker 1972; Kent and Coker 1992) and they range from finer to coarser scales (Chytrý 

and Otýpková 2003), but forest attribute monitoring at larger scales in field inventories is 

economically and operationally limited (Almeida et al. 2019). As the size of the sample plot 

increases, its effect decreases (Barbeito et al. 2009), therefore, an optimal plot size is needed 

that should be sufficiently large to obtain reliable measurements but not larger than the 

required size due to the costs involved (Chytrý and Otýpková 2003). The structural diversity 
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obtained by an indicator, for example 𝐺𝐶, also relies on the ALS spatial resolution (Mascaro 

et al. 2011) and the information retrieved may change if the scale of the observation is 

changed due to the aggregation of various stand conditions (Coomes and Allen 2007b). 

Spatial resolution stands for the plot size or the pixel size at which ALS metrics are computed 

(Ruiz et al. 2014; Packalen et al. 2019). Similarly, scan density is an important aspect of ALS 

that affects both the processing and the cost of the ALS data (Thomas et al. 2006; Kandare 

et al. 2016). Various studies have evaluated the effect of ALS scan density on the accuracy 

of digital terrain models (DTM) (Liu et al. 2007) and the measurement of ALS heights and 

biophysical stand properties (Gobakken and Næsset 2008). However, there is a gap in the 

existing scientific literature as to how plot size, stand density and ALS scan density affect 

the 𝐺𝐶 estimates.  

1.4.2 Cross-bioregional assessment of forest structure 

Forest structure is one of the essential properties of a forest ecosystem and influences the 

microclimate, carbon storage, wildlife habitats and biodiversity (Hyde et al. 2006; Hansen et 

al. 2014). Forest researchers have developed various approaches in the past to measure the 

structural properties of a forest, but these approaches were often laborious and restricted to 

small sampling areas (Weltz et al. 1994; Chytrý and Otýpková 2003). In Finland, various 

development classes, such as seedling, sapling, young thinning, advanced thinning, mature 

stands, seed-trees and multi-storeys have been used to separate the different stands, which 

assists in the management, planning and decision making for large forest areas (Valbuena et 

al. 2016b).  With the advent of remote sensing, the ability to quantify forest structural changes 

has improved considerably (Hyde et al. 2006). For example, Næsset and Gobakken (2008) 

used photo interpretation of stereo images and classified various inventory plots according to 

the site index, age class and tree species composition before biomass estimation, while 

Nelson et al. (2008) estimated the aboveground biomass in predefined aerial-photo-based 

forest classes. Similarly, ALS has been used to quantify structural properties, such as tree 

height, canopy cover and layering in specific forest stands (Hansen et al. 2014). Forests have 

also been classified into various FST in the literature: regeneration/understorey growth 

(Gougeon et al. 2001), sparse and dense forest stands (Fassnacht et al. 2017), young and 

mature forest stands (Spies and Franklin 1991; Næsset 2002), single layer/storey to multi-

layers/storey forest structures (O’Hara and Gersonde, 2004; Zhang et al. 2011), and reversed-

J type forest structures, which are characterised by a peak on the right side of the distribution 

curve where mature trees account for the maximum proportion of the basal area (Valbuena 

et al. 2013). However, the forest attributes or indicators, and the approaches used for such 

forest structural assessments, are disparate and the definition of FST varies from one 

application to another (Latifi 2012; Valbuena et al. 2013). Therefore, a region-independent 

objective quantitative approach is needed for the structural assessment of forests, which could 

be applicable across different forest types and biogeographical regions.  

1.4.3 Aboveground biomass predictions from FST detected directly from ALS data 

Aboveground biomass (AGB) estimation from the local to the global scale is important 

because it quantifies carbon sequestration in forests and assists in better forest management 

and planning (Boudreau et al. 2008). Remote sensing technologies in general and ALS in 

particular play key roles in the monitoring of forest resources at the regional scale (Næsset et 

al. 2011) and contribute to better global policies and decision-making, e.g., in REDD (Reduce 
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Emissions from Deforestation and forest Degradation) activities (Angelsen et al. 2009). 

Various studies have used remotely sensed data and have estimated forest biomass with 

varying degrees of success (Foody et al. 2001; Kankare et al. 2013; Su et al. 2016). 

Researchers have also employed ALS data and predicted forest attributes, including AGB 

(Kankare et al. 2013; Maltamo et al. 2016; Bouvier et al. 2015; Nguyen et al. 2019; Knapp 

et al. 2020), although the prediction precision depends on the relationship between the foliage 

observed by ALS and the various AGB components, because the ALS pulses are mainly 

blocked by foliage (Næsset and Gobakken 2008; Rocha de Souza Pereira et al. 2018). 

Similarly, the structural complexity of a forest can cause difficulties in modeling. For 

example, a general equation cannot be applied to all regions, to both sparse and dense forests 

or to even- and uneven-sized forest structures (Chave et al. 2005; Häbel et al. 2019). This 

problem can be solved by stratifying the forest into different FST using a threshold value to 

represent maximum entropy, and a separate biomass prediction model can be developed for 

each stratum (Valbuena 2017b), or the forest structural information may be included in the 

AGB modeling (Bouvier et al. 2015; Knapp et al. 2020). Valbuena et al. (2017b) identified 

various FST directly from ALS data using the L-coefficient of variation (𝐿𝑐𝑣), which is 

equivalent to the Gini coefficient calculated from ALS echo heights and L-skewness (𝐿𝑠𝑘𝑒𝑤) 

of ALS echo heights. They used a threshold value of 𝐿𝑐𝑣 = 0.50 to represent maximum 

entropy and to separate even- and uneven-sized FST, although determining maximum 

entropy from a distribution of ALS echo heights should be different than tree basal areas. 

Therefore, it is important to use appropriate methods for the structural classification of forests 

and to understand how forest structural information are related to AGB estimation. This 

would provide useful information for the enhancement of forest structural characterisation 

and improve large scale biomass mapping and their integration in better forest management 

and planning (Wulder et al. 2008; Knapp et al. 2020).  

1.5 Objectives of the research 

The basic aim of this doctoral dissertation is to improve FST assessment, by the development 

of consistent, replicable and region-independent methodologies. To ensure consistency, 

simple indicators and forest attributes that can be easily obtained from forest inventory data 

have been used, while replicability and region-independency has been achieved by using 

ALS data in all studies. Methodologies developed in this doctoral dissertation have the 

potential to assist in the large-scale mapping and regional comparison of forest structures. 

The specific objectives of the research are: 

1) To study plot size, stand density and ALS density effects on the relationship between 𝐺𝐶 

of tree size inequality and ALS metrics, and to develop a simple method to select the 

optimal plot size for 𝐺𝐶 estimation from field data and its prediction from ALS data (I). 

2) To develop region-independent methodologies by using four forest attributes – 𝐺𝐶, 

𝐵𝐴𝐿𝑀, 𝑄𝑀𝐷 and 𝑁– obtained from Boreal, Mediterranean and Atlantic biogeographical 

regions, achieve a full description of FST, which contains all possible forest structural 

components, and evaluate the capacity and reliability of ALS data in acquiring those FST 

(II). 

3) To detect the various FST directly from ALS data using L-coefficient of variation and L-

skewness of ALS echo heights, develop an AGB prediction model for each FST and 

compare that model with a general AGB prediction model that contains the full dataset 

without prior stratification (III). 
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2 MATERIALS AND METHODS 

2.1 Research sites and data collection 

As the main goal of this dissertation was to develop region-independent methodologies for 

the structural characterisation of forests, I used field and ALS data from four research sites 

within three biogeographical regions (Boreal, Mediterranean and Atlantic) (Figure 2). 

2.1.1 Kiihtelysvaara inventory area, Finland (Boreal) 

Kiihtelysvaara is a boreal inventory area located in the eastern region of Finland (62°31' N, 

30°10' E) and is managed for ecological sustainability and timber production. Scots pine 

(Pinus Sylvestris L.) is the main tree species and constitutes 73 % of the total wood volume, 

while Norway spruce (Picea abies (L.) Karst.) accounts for 16 %. The remaining 11 % is 

derived from deciduous species; downy birch (Betula pubescens Ehrh.) and silver birch (B. 

pendula Roth.) (Packalen et al 2013). A field inventory was carried out from May to June 

2010 and data were collected from 79 squared field plots of various dimensions (20 × 20 m, 

25 × 25 m, 30 × 30 m) (Maltamo et al. 2012). First, stratified random sampling was employed 

and the forest stands were selected and plots were then deliberately established at 

representative locations to avoid the placing of plots at the border of the stands due to the 

high costs and efforts required to measure all the trees. Before field data collection, the 

position (latitude and longitude) of all trees was recorded from high resolution ALS data 

using the ITD method (Packalen et al. 2013). Those tree positions were validated in the field, 

and the 𝑑𝑏ℎ of all trees with a height > 4 m or 𝑑𝑏ℎ > 5 cm were then measured. ALS data 

were collected on June 29, 2009 using an ATM Gemini sensor (Optech, Canada) from 600–

700 m above ground surface with 26° field of view and 125 kHz pulse rate. The scan width 

and overlap between the strips were 320 m and 55 %, respectively. The average density of 

the ALS data was 11.9 points m-2. Field and ALS data from the Kiihtelysvaara inventory area  

were used in studies I and II, but the larger field plots were reduced to 20 × 20 m to ensure 

consistency with the other two regional sites (Valsaín forest, Spain, and Wytham Woods, 

United Kingdom) used in study II. 

2.1.2 Joensuu inventory area, Finland (Boreal) 

This inventory area is located in the North Karelia region of eastern Finland (62°15' N, 30°13' 

E). The total area is approximately 252,000 ha and Scots pine, Norway spruce and birch 

species are the dominant species. Other deciduous species, such as Alnus and Populus are 

present but at a minor scale. The whole inventory area was divided into eight different strata 

based on development classes, such as seedling, sapling, young thinning, advanced thinning, 

mature, seed trees, shelterwood and multi-storey, and 244 field plots were randomly collected 

by University of Eastern Finland and Finnish Forest Centre (Suomen Metsäkeskus; SMK) in 

a joint collaboration in 2013. An approximately equal number of sample plots were collected 

from each stratum and the field data included species, 𝑑𝑏ℎ and height information. The 

detailed field data acquisition strategy is described in Valbuena et al. (2016b). For ALS data 

collection, a Leica ALS60 system was used at 2300 m above ground surface in May 2012 
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under leaf-off conditions, and the average point density of the ALS data was 0.91 points m-

2. Data from the North Karelia inventory area were used in study III. 

2.1.3 Valsaín forest, Spain (Mediterranean) 

Valsaín is located in the Segovia province, Spain (40°48′N, 4°01′W) at 300–1500 m above 

sea level. It is a drought-adapted Scots pine shelterwood managed forest (Valbuena et al. 

2013). In summer 2006, field data were collected in 37 circular field plots (20 m radius). All 

seedlings and saplings were recorded in the inner 10 m radius of the sample plot, while trees 

with 𝑑𝑏ℎ > 10 cm were measured in the outer 20 m radius. In the same year, ALS data were 

obtained in September using ALS50-II Leica Geosystems (Switzerland) from 1500 m above 

ground surface. The field of view was 25° and the scan was performed in a bidirectional 

manner with 665 m width and 40 % side overlap. The average point density was 1.15 points 

m-2. Data from Valsaín forest was used in study II. 

2.1.4 Wytham Woods, UK (Atlantic) 

Wytham woods is a deciduous forest located in the Oxfordshire, UK (51°46′N, 1°20′W). Ash 

(Fraxinus excelsior), sycamore (Acer pseudoplatanus), maple (Acer campestre), oak 

(Quercus robur) and hazel (Corylus avellana) and are the dominant species in this forest 

(Savill et al., 2011). The data, which included 𝑑𝑏ℎ of stems > 1 cm, were collected in 2010 

from an 18-ha permanent plot. This permanent plot was divided into 450 subplots (20 × 20 

m each). Low-resolution ALS data, with 0.198 points m-2 average point density, were 

collected in June 2014 using a Leica ALS50-II LiDAR system from 2500 m above sea level. 

The field of view and pulse rate were 35° and 69.8 kHz, respectively. 

2.2 Processing of ALS data 

In all studies (I–III), FUSION software of the USDA Forest Service (McGaughey 2015) was 

used and area-based metrics were calculated from ALS echo heights > 0.1 m. The 0.1 m limit 

was used to avoid the lower echo heights, which could be reflected from the ground surface. 

Prior to ALS metrics calculation, the last echoes of ALS data were extracted and interpolated 

into a DTM, which was then subtracted from the ALS echo heights to avoid terrain effects 

on ALS metrics calculations. The ALS metrics are the statistics of ALS height distribution 

that could be related to various forest attributes (Table 2). For example, minimum, mean and 

maximum ALS echo heights are related to minimum, mean and dominant tree heights, cover 

(percentage of all returns above a specified height) is used to represent stand density, standard 

deviation of ALS echo heights is related to variation in tree heights, and 𝐿𝑐𝑣  and 𝐿𝑠𝑘𝑒𝑤  is 
used to assess tree size inequality and dominance, respectively. These metrics are used as 

auxiliary information in ALS-assisted estimation of forest variables (Næsset 2002). 

2.3 Optimal plot size selection for ALS-assisted Gini coefficient estimation (I) 

The first task in optimal plot size selection was to simulate concentric circular plots (hereafter 

referred to as simulated circular plots) that ranged from 1–15 m radius within each original 

field plot (79 plots in total). The number of simulations (n=700) were selected based on a 
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Figure 2. Map showing the location of the research sites used in this doctoral dissertation 

within three biogeographical regions (European Environmental Agency 2020). 

 

Table 2. Airborne laser scanning (ALS) metrics and their corresponding forest characteristics. 

Notation Explanation Relevant forest characteristics 

𝑀𝑎𝑥/𝑃99 Maximum ALS height over an 

area/99th percentile 

Dominant height of tree 

𝑃50 50th percentile of ALS echo 

heights 

Mean height of tree 

𝑃25 25th percentile (1st quartile) Understorey growth 

𝐶𝑜𝑣𝑒𝑟 Percentage of all returns above 

0.1 m  

Canopy cover/stand density 

𝑆𝑡𝑑𝐷𝑒𝑣 Standard deviation in ALS 

echo heights 

Variation in tree heights 

𝐶𝑅𝑅 Canopy relief ratio Vertical structure 

𝐿𝑐𝑣  L-coefficient of variation of 

ALS echo heights 

Tree size inequality 

𝐿𝑠𝑘𝑒𝑤/𝑆𝑘𝑒𝑤 L-skewness/skewness of ALS 

echo heights 

Tree dominance 
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sensitivity analysis. The spatial distribution of the trees was replicated around the original 

field plot to overcome the edge effects that produce bias in statistical calculations (Diggle 

2003; Pommerening and Stoyan 2006). Then, a random position was selected within each 

original field plot and the 𝐺𝐶 calculation was repeated within the simulated circular plots (1–

15 m radius) using equation 1. The absolute position (latitude and longitude) of all 

simulations were recorded and was used to extract the corresponding ALS metrics at a later 

stage. The average 𝐺𝐶̅̅ ̅̅  value was computed for each simulated circular plot within each 

original field plot. Thereafter, all 𝐺𝐶 values were directly compared using the absolute 𝐺𝐶 

differences (𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓). The 𝐺𝐶̅̅ ̅̅

𝑑𝑖𝑓𝑓  was calculated by subtracting the 𝐺𝐶̅̅ ̅̅  value of all simulated 

circular plots from a reference 𝐺𝐶𝑟𝑒𝑓  value (calculated from a reference field plot). The 

𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓  value was useful for the evaluation of all the simulations, and provided the first 

stabilisation criterion for stable 𝐺𝐶 estimation. 

𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 =  |𝐺𝐶𝑟𝑒𝑓 −  𝐺𝐶̅̅ ̅̅  |      (2) 

The 𝐺𝐶 calculation and the accuracy of ALS-assisted estimation of any forest attribute 

depends on a basic relationship that exists between the plot size and the sample size. 

Therefore, the stand density (𝑛) in a simulated circular plot size 𝑠 (radius) is related to the 

stand density (𝑁) of the original field plot by:  

𝑛 = 𝑁𝜋𝑠2        (3) 

A similar relationship between the point density (𝑝) within the same simulated circular 

plot 𝑠 (radius; m) is also tied to the point density (𝑑; points m-2) of the original field plot. 

𝑝 =  𝑑𝜋𝑠2        (4) 

An interesting question emerges here as to whether the optimisation should be based on 

a plot size (spatial resolution in the case of ALS-assisted estimations) or a sample size (𝑁 or 

𝑑) because they are both directly related to each other. Therefore, the same procedure was 

replicated to select the optimal plot size and sample size for reliable ALS-assisted 𝐺𝐶 

estimation. 

2.3.1 Criteria for plot size and sample size optimisation 

Two criteria were set for the plot size and sample size optimisation. First, stabilisation of the 

𝐺𝐶 values at a given plot size (𝑠) or sample size (𝑛) was achieved by observing the 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓  

value for increasing s or 𝑛, where the estimation of the 𝐺𝐶 value (at 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 = 0.05) was 

considered to be stable. Second, maximisation of the absolute correlation |𝑟| between the 𝐺𝐶 

values and ALS metrics was calculated. Any plot size 𝑠 or sample size 𝑛 that fulfilled the 

above two criteria were considered optimal plot size 𝑠∗ or sample size 𝑛∗.  

𝑠∗ = 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 < 0.05│𝑚𝑎𝑥|𝑟|      (5.1) 

𝑛∗ = 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 < 0.05│𝑚𝑎𝑥|𝑟|      (5.2) 
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After optimal plot size 𝑠∗ was selected, the varying ALS point density (𝑑) effects were 

investigated. The original ALS point density (11.9 point m-2) was decreased to 0.50, 0.75, 1, 

3, 5, 7.5 and 10 points m-2 using the appropriate thinning factor (Ruiz et al. 2014) and the 

methods included in the LAStools software (Jakubowski et al. 2013; RapidLasso GmbH Inc.: 

Isenburg 2016). For each reduced point density, new ALS metrics and their correlation with 

the 𝐺𝐶 values were calculated. In addition, the effect of changing ALS point densities on the 

absolute correlation |𝑟| between the 𝐺𝐶 values and the new ALS metrics was examined. 

2.4 Cross-bioregional FST assessment (II) 

Four forest attributes – 𝐺𝐶, BALM, 𝑄𝑀𝐷 and 𝑁– were calculated from the three 

biogeographical regions –Boreal, Mediterranean and Atlantic, and they were grouped into 

two broad categories: coniferous forest, which included data from Boreal (Finland) and 

Mediterranean (Spain) regions, and deciduous forests, which included data from the Atlantic 

bioregion (UK). In the first task, hierarchal clustering analysis (HCA), which merges 

(agglomerative procedure) or splits (divisive procedure) all observations on the basis of 

proximity measures, such as Euclidean distance, was applied and potential clusters (FST) 

were obtained for both coniferous and deciduous forests using the aforementioned four forest 

attributes. However, since the data were in different units, treating them in their original scale 

would place an unreasonable weighting on some forest attributes over others. To overcome 

this bias, standardisation of the original attributes using a range-equalisation method was 

performed prior to Euclidean distance calculation, and each attribute was normalised to a 0–

1 scale. Then, the optimum number of clusters 𝑐 was decided based on a distortion curve 

(Sugar and James 2003; Everitt et al. 2011), and the hclust function included in the R package 

fastcluster (Müllner 2013) was applied to separate both coniferous and deciduous forests into 

the optimum number of clusters. 

Since my interest was to determine the empirical threshold values of the forest attributes 

and use them to separate the various FST, the CART analysis (classification and regression 

tree) included in the R package rpart (Breiman et al. 1984) was applied. In this analysis, the 

four forest attributes (𝐺𝐶, 𝐵𝐴𝐿𝑀, 𝑄𝑀𝐷 and 𝑁) were used as explanatory variables, and the 

potential clusters (FST) obtained from HCA were used as response variables. The data were 

split into the optimum number of clusters that were identified at the HCA stage, and the 

results resembled a tree where the classification decision (threshold values of the forest 

attributes) was given at each node between the two branches. 

The FST obtained in the previous stage were finally predicted from the ALS data by 

applying the widely used k-nearest neighbour (kNN) method included in the R package class 

(Venables and Ripley 2001). This method is a supervised machine learning method and is 

widely used for the prediction of various forest attributes, such as volume, biomass, stand 

density, and basal area (Maltamo and Kangas 1998; Franco-Lopez et al. 2001; Breidenbach 

et al. 2012). In the kNN method, four area-based ALS metrics, such as maximum ALS return, 

percentage of all returns > 0.1 m, L-coefficient of variation and L-skewness of ALS echo 

heights were used because these metrics could be related to the 𝑄𝑀𝐷, 𝑁, tree size inequality 

and tree dominance, respectively (Zimble et al. 2003; Valbuena et al. 2017b). Leave-one-out 

cross validation was used for accuracy assessment, and the bias was determined as the 

difference between producer and user accuracies. For the former, accuracy is the proportion 

of the observed field plots for a FST that are classified as correct, whereas for the latter, 

accuracy is the proportion of field plots that are correctly classified as FST (Story and 
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Congalton, 1986). The kappa coefficient (𝑘) and overall accuracy (OA), which are included 

in the R package vcd (Meyer et al. 2014), were used to evaluate potential misclassification. 

2.5 ALS-based forest structural type assessment and aboveground biomass prediction 

(III) 

Two L-moment ratios (L-coefficient of variation and L-skewness) were used to classify 

different FST directly from ALS data. L-moments are the same as the conventional moments 

but are more reliable and robust to measure the properties of a probability density distribution 

(Frazer et al. 2011). L-moments are based on the expected value 𝐸(𝑋𝑛:𝑠) in a sample order 

statistic 𝑋𝑛:𝑠, where 𝑛 is the smallest observation in sample size 𝑠, and are restricted by fixed 

intervals (Hosking 1990). 𝐿𝑐𝑣  is the ratio between the second (𝐿2) and the first (𝐿1) L-

moments (equation 6), while 𝐿𝑠𝑘𝑒𝑤  is the ratio between the third (𝐿3) and the second (𝐿2) L-

moments (equation 7). 

𝐿𝑐𝑣 =
𝐿2

𝐿1
=  

𝐸(𝑋2:2)−𝐸(𝑋1:2)

2𝐸(𝑋)
      (6) 

𝐿𝑠𝑘𝑒𝑤 =
𝐿3

𝐿2
=  

𝐸(𝑋3:3)−2𝐸(𝑋2:3)+𝐸(𝑋1:3)

𝐸(𝑋3:3)−𝐸(𝑋1:3)
     (7) 

where 𝐸(𝑋) is the expected values of 𝑋 which represents the ALS echo heights. 

𝐿𝑐𝑣 is mathematically equivalent to the 𝐺𝐶 of tree size inequality calculated from ALS 

echo heights, bounded between [0,1] intervals and is useful to discriminate between even- 

and uneven-sized FST (Valbuena et al. 2017b: Appendix A3). Valbuena et al. (2017b) used 

a threshold value of 𝐿𝑐𝑣 = 0.50 to represent maximum entropy. However, my mathematical 

findings (see Appendix A in III) showed that the threshold value to represent the maximum 

entropy calculated from ALS echo heights should be 0.33, as compared to the 0.50 threshold 

value calculated from tree basal areas. Therefore, the 𝐿𝑐𝑣 = 0.33 threshold value was used 

in this study to represent maximum entropy and to separate the even- (𝐿𝑐𝑣 < 0.33) and 

uneven-sized (𝐿𝑐𝑣 > 0.33) structures. On the other hand, 𝐿𝑠𝑘𝑒𝑤 is bounded between [-1,1] 

intervals (Hosking, 1989) and can be useful to evaluate canopy closure (open canopies vs 

closed canopies) (Lefsky et al. 2002). 𝐿𝑠𝑘𝑒𝑤 = 0, which represents the symmetric 

distribution, was used to separate the open canopies (𝐿𝑠𝑘𝑒𝑤 > 0) from closed canopies 

(𝐿𝑠𝑘𝑒𝑤 < 0).  

2.5.1 Aboveground biomass prediction and accuracy assessment 

In this step, tree level aboveground biomass (kg) was calculated using species-specific 

biomass equations, such as for birch (Repola 2008) and Scots pine and Norway spruce 

(Repola 2009). These equations require the 𝑑𝑏ℎ and height of each species as inputs. Missing 

tree heights were predicted using Näslund’s height curve model (1936) as presented by 

Siipilehto (1999). Prior to the tree height predictions, the species-specific height (𝐻𝑔𝑀) and 

diameter (𝐷𝑔𝑀) with median basal area were calculated and were used to determine the 

parameters of Näslund’s height curve model. These parameters were used in the model to 

predict the missing tree height from tree 𝑑𝑏ℎ. Finally, aboveground biomass estimates were 
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aggregated to the plot level (Mg ha-1) and used as a response variable in the subsequent 

prediction models.  

To predict AGB from ALS data, a best subset of ALS metrics (predictors) was first 

selected for the general model including the full dataset (without pre-stratification) and for 

each FST (even- and uneven-sized, and open and closed canopy FST) using function 

“regsubset” of the R package “leaps”. Then, the kNN method was applied and the AGB was 

predicted from the best subset of ALS predictors in each model. The results of the observed 

and predicted AGB were evaluated using root mean square difference (RMSD) and mean 

difference (MD): 

𝑅𝑀𝑆𝐷 =  √
∑ ((𝑦𝑖

𝑐𝑣−�̂�𝑖)2𝑛
𝑖=1

𝑛
      (8) 

𝑀𝐷 =  
∑ ((𝑦𝑖

𝑐𝑣−�̂�𝑖)𝑛
𝑖=1

𝑛
       (9) 

where 𝑛 is the total number of observations (field plots), 𝑦𝑖
𝑐𝑣 and �̂�𝑖 are the predicted 

values using cross validation and the observed value of AGB for observation 𝑖.  
An additional restriction (sum of square ratio (SSR)) was used to avoid overfitting of the 

models. SSR is the ratio between the squared root sum of square obtained from cross 

validation (𝑆𝑆𝑐𝑣) and without cross validation (𝑆𝑆𝑓𝑖𝑡). 

𝑆𝑆𝑅 = √𝑆𝑆𝑐𝑣/√𝑆𝑆𝑓𝑖𝑡        (10) 

𝑆𝑆𝑐𝑣 =  ∑ (𝑦𝑖
𝑐𝑣 − �̂�𝑖)

2𝑛
𝑖=1       (11) 

𝑆𝑆𝑓𝑖𝑡 =  ∑ (𝑦𝑖
𝑓𝑖𝑡 − �̂�𝑖)

2𝑛
𝑖=1       (12) 

where �̂�𝑖 is the observed value of AGB, and 𝑦𝑖
𝑐𝑣 and 𝑦𝑖

𝑓𝑖𝑡 are the predicted AGB values 

with cross validation and without cross validation for observation 𝑖, respectively. 

  

3 RESULTS 

3.1 Optimising the ALS-assisted Gini coefficient estimation (I) 

3.1.1 Plot and sample size optimisation for the Gini coefficient of tree size inequality 

The results of the first criterion used to devise the minimum plot size or sample size that 

could produce a stable 𝐺𝐶 estimation of the population are shown in Figure 3. The 𝐺𝐶 

estimation at the smaller plot sizes and sample sizes were very unstable and only a few 

smaller simulated circular plots produced a stable 𝐺𝐶 estimation, most likely in the very 

even-sized stands. The larger simulated circular plots produced stable 𝐺𝐶 estimations (see 

Figure 3a in I). The 𝐺𝐶 stabilisation started at the 6 m radius plot size where 100 % of the 

original field plots were below the 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 < 0.05 limit (Figure 3). Thus, the minimum plot 



26 

 

size should be at least 6 m in radius (approximately 113 m2) to achieve a stable 𝐺𝐶 estimation. 

A similar trend was found for the number of trees (sample size) because both the plot size 

and sample size are related to each other, according to equation 3 (see Figure 3b in I). It was 

observed that the minimum plot size (𝑠 = 6 m radius) requires an average 15 trees to obtain 

a stable 𝐺𝐶 estimation (Figure 3). However, the average number of trees (sample size) could 

also be dependent on the heterogeneity of the forest, and stands with a greater inequality 

would require a greater number of trees, as compared to more homogeneous stands. 

In regard to the second criterion, which shows the evolution of absolute correlation |𝑟| of 

the 𝐺𝐶 estimates with the selected ALS metrics (P25, P50, P99, Skew, StdDew, Cover, CRR 

in Table 2), irregular fluctuations were observed in the smaller plot sizes (𝑠 < 6 m radius) 

(see Figure 4a of I), which could possibly be due to the unstable 𝐺𝐶 estimations in the smaller 

plots sizes. Once the 𝐺𝐶 estimation stabilised under the first criterion, the correlation of 𝐺𝐶 

values with the selected ALS metrics produced a convex curve with increasing plot sizes. 

Thus, it was possible to decide the optimal plot size for the 𝐺𝐶 estimation based on the 

greatest absolute correlation |𝑟|. The maximum correlation was observed for the plot size 

with 9–12 m radius, which were considered as the optimal plot size 𝑠∗ for reliable 𝐺𝐶 

estimation (Table 3).  

In the sample size optimisation, the absolute correlation |𝑟| of 𝐺𝐶 values with the same 

ALS metrics (P25, P50, P99, Skew, StdDew, Cover, CRR) (second criterion) but with an 

increasing number of trees (sample size) showed that the absolute correlation between 𝐺𝐶 

and ALS metrics with a smaller number of trees (𝑛 < 15) was also irregular and should be 

avoided according to the first criterion, as some of the plots were above the 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 < 0.05 

limit (Figure 3). However, beyond 𝑛 = 15, the correlation stabilised (see Figure 4b in I). The 

optimal sample size 𝑛∗ for reliable 𝐺𝐶 estimation should range from 30–60 trees because 

both the plot size and sample size are related to each other, according to equation 3 (Table 

3). 

 

Figure 3. Average number of trees in each simulated circular plot and the proportion of original 

field plots that fell within the 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 < 0.05 limit and reached stabilisation (first criterion). 
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Table 3. Results of the second criterion showing the maximum absolute correlation of the field 
𝐺𝐶 with the airborne laser scanning (ALS) metrics in the optimal plot sizes and their 

corresponding number of trees (second criterion). 

|𝑟|: absolute correlation; 𝑠∗: optimal plot radius (m); 𝑛∗:optimal number of trees 

3.1.2 Effects of ALS point density on the relationship between 𝐺𝐶 values and ALS metrics  

Once the optimal plot size was determined (in the previous stage), the s*= 9 m radius was 

selected as the optimal plot size to analyse the effects of the changing ALS point densities. 

To help in the direct comparison, the same ALS metrics (i.e. P25, P50, P99, Skew, StdDew, 

Cover, CRR) were also selected in this case. The relationship (|𝑟|) between the 𝐺𝐶 values 

and the selected ALS metrics with increasing point densities was assessed (see Figure 6 in 

I). No substantial changes in the relationship were found, which suggests that the relationship 

between the 𝐺𝐶 values and the ALS metrics is not affected by point density 𝑑. However, 

point density 𝑑 < 3 points m2 showed a decreasing trend in the relationship, which should 

be avoided.  

3.2 Cross-bioregional FST assessment (II) 

3.2.1 Determination of FST from field data 

In the cross-bioregional FST assessment, five optimum clusters were initially selected for the 

hierarchal clustering analysis (HCA) because HCA completely merges or splits all individual 

observations. Then, both the coniferous and deciduous forests were divided into those five 

optimum clusters (FST), and the threshold values of the four forest attributes – 𝐺𝐶, BALM, 

𝑄𝑀𝐷 and 𝑁– (explanatory variables) were identified using CART analysis. The explanatory 

variable at each node maximises the inter-cluster variability, therefore, the order of these 

explanatory variables shows their importance in determining the different FST, both in 

coniferous and deciduous forests. The first cluster, which had the lowest intra-group 

variability in the coniferous forest, was produced by 𝐺𝐶 ≥ 0.51, while in the deciduous 

forest, 𝐵𝐴𝐿𝑀 ≤ 0.87  produced the first cluster (Table 4). This was an iterative procedure 

that eventually resulted in five homogeneous clusters (FST) with the lowest intra-group 

variability in both forests. 

The threshold values of all explanatory variables determined at each node were used to 

identify the different FST (Table 4; see Figure 2 in II for a graphical representation of the 

classification tree and the diameter distributions of each FST). In the coniferous forest, 

greater 𝐺𝐶 values (≥ 0.51) at the first node separated the peaked reversed J-type FST (#1.2) 

from the single storey and multi-layered FST. The next node was based on stand density 

(𝑁 ≥ 1339 stems ha-1), which separated out the young, dense single storey (#2.1).  

ALS metric 

 

max|𝑟| 𝑠∗ 

 

Plot area (m2)  𝑛∗ 

Skew 0.58 10 
314.16 

41 

Cover 0.45 12 
452.39 

59 

CRR 0.42 9 
254.47 

33 
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Table 4. Exact threshold values that separated forest structural types (FST) in the coniferous 
and deciduous forests. See Figure 2 in II for a graphical representation of the classification 
tree and the diameter distribution of the FST.  

Split/ 

Node  

Coniferous Forest Deciduous Forest 

 Condition FST Condition FST 

1 𝐺𝐶 ≥ 0.51 peaked reversed J 

(#1.2) 

𝐵𝐴𝐿𝑀 > 0.87 peaked reversed J 

FST (#1.2) 

2 𝑁 ≥ 1339 young dense 

single storey 

(#2.1) 

𝑁 > 1998 young dense 

single storey 

(#2.1) 

3 𝑄𝑀𝐷 > 36.60  very mature 

single storey 

(#2.3) 

𝐺𝐶 < 0.55 mature sparse 

multi-layered 

(#3.2) 

4 𝐵𝐴𝐿𝑀 ≥ 0.67 mature sparse 

multi-layered 

(#3.2) 

𝑄𝑀𝐷 > 24.50 young dense 

multi-layered 

(#3.1) 

𝐵𝐴𝐿𝑀 < 0.67 mature single 

storey (#2.2) 

𝑄𝑀𝐷 < 24.50 young dense 

reversed J (#1.1) 

𝐺𝐶: Gini coefficient: 𝑁: stand density (stems ha-1); 𝑄𝑀𝐷: quadratic mean diameter (cm); 

𝐵𝐴𝐿𝑀: basal area larger than mean. 

 

Thereafter, a high 𝑄𝑀𝐷 (> 36.60 𝑐𝑚) separated out the very mature single storey (#2.3). 

The last node was based on 𝐵𝐴𝐿𝑀, which separated the mature sparse multi-layered (#3.2) 

from the mature single storey (#2.2) (by 𝐵𝐴𝐿𝑀 > 0.67). In the deciduous forest, the first 

node was based on 𝐵𝐴𝐿𝑀, which separated out the peaked reversed J-type FST (#1.2) by 

𝐵𝐴𝐿𝑀 > 0.87. The next two nodes were based on 𝑁 and 𝐺𝐶 and they separated the young, 

dense single storey (#2.1) and the mature, sparse multi-layered (#3.2) by 𝑁 >
1998 stems  ha−1 and 𝐺𝐶 < 0.55, respectively. The final node was based on 𝑄𝑀𝐷 and the 

young, dense reversed J-type forest structure (#1.1) was separated from the young, dense 

multi-layered (#3.1) by 𝑄𝑀𝐷 < 24.50 cm. The characteristics that were useful to 

denominate the various FST in this study could be valuable in other relevant studies, and are 

summarised in Table 5. 

3.2.2 Forest structural types prediction from ALS data 

The observed and predicted FST in the coniferous forests (Finland: Boreal, and Spain: 

Mediterranean) are shown in Table 6 wherein the peaked reversed J-type FST (#1.2) was 

accurately predicted. A slight underprediction was observed in the young, dense single storey 

(#2.1) and mature single storey (#2.2) FST, while the very mature single storey (#2.3) and 

the mature, sparse multi-layered (#3.2) were slightly overpredicted. The overall accuracy in 

the coniferous forest was 𝑂𝐶 = 0.73 and 𝑘 = 0.64 (Table 6a). In the deciduous forest (Table 

6b), reversed J-type FST, such as the young, dense reversed J-type (#1.1) and the peaked 

reversed J-type (#1.2), were accurately predicted, while the remaining three FST (#2.1: 

young, dense, single storey; #3.1: young, dense, multi-layered; #3.2: mature sparse multi-
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layered) were slightly underpredicted. However, the overall accuracy in the deciduous forests 

was better than for the coniferous forest (𝑂𝐶 = 0.87 and 𝑘 = 0.81).  

3.3 Aboveground biomass estimation from FST detected directly from ALS data (III) 

3.3.1 Forest structural types detection from ALS data 

Figure 4 shows the forest development classes that represent the various FST on either side 

of 𝐿𝑐𝑣 = 0.33 and 𝐿𝑠𝑘𝑒𝑤 = 0, which are the boundary lines that separate even- and uneven-

sized FST, and open and closed canopy FST, respectively. Seedling, young thinning, 

advanced thinning and mature development classes usually consist of even-sized diameter 

distributions and the majority were correctly assigned below 𝐿𝑐𝑣 = 0.33, whereas the seed 

tree and multi-storied FST, which consist of uneven-sized diameter distributions, were above 

𝐿𝑐𝑣 = 0.33. However, in the sapling development class, where the diameter distribution is 

usually even, the majority was classified as uneven-sized (𝐿𝑐𝑣 > 0.33), and the shelterwood 

development class, which comprises uneven-sized diameter distribution, was assigned as 

even-sized (𝐿𝑐𝑣 < 0.33). In contrast, seedling, sapling and seed tree development classes, 

which have smaller aboveground biomass, open canopies and low ALS returns, were 

correctly assigned above 𝐿𝑠𝑘𝑒𝑤 = 0. Moreover, the young thinning, advanced thinning, 

mature and shelterwood development classes, which consist of large aboveground biomass, 

closed canopies and high ALS returns were assigned below 𝐿𝑠𝑘𝑒𝑤 = 0. 

 

Table 5. Denomination of forest structural types (FST) based on their diameter distribution in 

each classification tree provided in Figure 2 in II. 

FST# Denomination Characteristics 

#1.1 Young dense reversed J High 𝐺𝐶, medium/high 𝐵𝐴𝐿𝑀, high 𝑁, and low 𝑄𝑀𝐷 

#1.2 Mature sparse reversed J 

(Peaked reversed J) 

High 𝐺𝐶, high 𝐵𝐴𝐿𝑀, medium/low 𝑁 and high 𝑄𝑀𝐷 

#2.1 Young dense single 

storey 

Medium 𝐺𝐶, medium 𝐵𝐴𝐿𝑀, high 𝑁 and low 𝑄𝑀𝐷 

#2.2 Mature single storey Low 𝐺𝐶, low 𝐵𝐴𝐿𝑀, medium 𝑁 and medium 𝑄𝑀𝐷 

#2.3 Very mature single 

storey 

Low 𝐺𝐶, medium/low 𝐵𝐴𝐿𝑀, low 𝑁 and high 𝑄𝑀𝐷 

#3.1 Young dense multi-

layered 

Medium 𝐺𝐶, medium 𝐵𝐴𝐿𝑀, low 𝑁 and high 𝑄𝑀𝐷 

#3.2 Mature sparse multi-

layered 

Medium 𝐺𝐶, medium 𝐵𝐴𝐿𝑀, medium 𝑁 and medium 

𝑄𝑀𝐷 

𝐺𝐶: Gini coefficient; 𝐵𝐴𝐿𝑀: Basal area larger than the mean; 𝑄𝑀𝐷: quadratic mean diameter 

(cm);  𝑁: stand density (stems ha-1) 
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Table 6. Contingency matrix showing the observed and predicted forest structural types (FST) 

in (a) coniferous, and (b) deciduous forests using the nearest neighbour imputation method. 

(a) 

 (b) 
 Observed FST 

Predicted FST #1.1 #1.2 #2.1 #3.1 #3.2 
User 

Accuracy 

#1.1 40 0 2 1 0 0.93 

#1.2 0 41 0 2 2 0.91 

#2.1 0 0 5 1 0 0.83 

#3.1 1 1 0 10 2 0.71 

#3.2 0 1 0 2 5 0.62 

Producer 

Accuracy 

0.98 0.95 0.71 0.62 0.56 
  

#1.1: young, dense reversed J; #1.2: mature, sparse reversed J (peaked reversed J); #2.1: 

young, dense single storey; #2.2: mature, single storey; #2.3: very mature, single storey; #3.1: 

young, dense multi-layered; #3.2: mature, sparse multi-layered.  

 

3.3.2 Aboveground biomass prediction in the detected FST 

The calculated AGB and other forest attributes in the full dataset (without pre-stratification), 

and each FST separated by the 𝐿𝑐𝑣 = 0.33 and 𝐿𝑠𝑘𝑒𝑤 = 0 boundary lines, are shown in Table 

7. The average AGB in the full dataset was 89.5 Mg ha-1. When the full dataset was classified, 

AGB in the even- and uneven-sized, and open and closed canopy FST were 105.2 Mg ha-1 

and 74.2 Mg ha-1, and 51.5 Mg ha-1 and 129.4 Mg ha-1, respectively. The average 𝐺𝐶 

calculated from the basal areas in the even-sized (0.41) and uneven-sized FST (0.67) also 

affirmed the correct classification by the 𝐿𝑐𝑣 = 0.33 boundary line. The average 𝑄𝑀𝐷 in the 

even-sized FST was greater (11.7 cm) than the uneven-sized FST (7.5 cm), which may be 

due to the inclusion of the mature development class in the even-sized FST. The average 

𝑄𝑀𝐷 in the closed canopy was similarly greater (13.5 cm) than the open canopy FST (5.7 

cm) due to the inclusion of the mature development class in the closed canopy FST. The 

 Observed FST 

Predicted FST #1.2 #2.1 #2.2 #2.3 #3.2 
User 

Accuracy 

#1.2 26 7 0 0 1 0.76 

#2.1 4 11 0 0 1 0.69 

#2.2 0 0 3 0 3 0.50 

#2.3 4 0 0 19 0 0.83 

#3.2 0 4 8 0 25 0.68 

Producer 

Accuracy 

0.76 0.50 0.27 1.00 0.83 
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average number of trees (stem density) in all FST in this study was substantial due to the 

inclusion of the seedling class. 

Once the AGB was calculated from the field data, the next step was to predict AGB from 

the ALS data in the full dataset (without pre-stratification) using a general model, and in each 

of the pre-stratified ALS-detected FST using specific models. Before modelling, various ALS 

metrics were selected in each model using the “best subset” method. Overall, the metrics 

consisted of a measure of the central tendencies and dispersions, height percentiles and cover 

metrics of ALS echo heights, but there were major differences in the selected ALS metrics 

in even-sized vs uneven-sized FST, and open vs closed canopy FST. For example, in even-

sized and closed canopy FST, the average percentile (50th percentile) and cover metrics were 

important compared to the uneven- and open canopies where high percentiles (70th and 99th 

percentiles) and variance were important (see Table 3 in III). 

 

Figure 4. Separation of the development classes that represent the various forest structural 
types (FST) in a boreal forest by the boundary lines 𝐿𝑐𝑣 = 0.33 and 𝐿𝑠𝑘𝑒𝑤 = 0. 
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Table 7. Aboveground biomass and other forest attribute estimations in the full dataset 
(without classification), and forest structural types (FST) detected from airborne scanning 
(ALS) data.   

AGB: aboveground biomass; 𝑄𝑀𝐷: quadratic mean diameter; 𝐺𝐶: Gini coefficient of basal 

area; 𝐿𝑐𝑣: L-coefficient of variation of LiDAR heights; 𝐿𝑠𝑘𝑒𝑤: L-skewness of LiDAR heights 

SD: standard deviation, 

 

Accuracy assessments of the general model (Figure 5) shows that the RMSD value 

obtained from the observed vs predicted AGB was 37.4 Mg ha-1, and similar RMSD values 

were obtained in the even- and uneven-sized FST. However, the RMSD values in the open 

and closed canopy FST were slightly reduced to 35.6 and 35.3 Mg ha-1, respectively. The 

MD values in all FST were greater than in the full dataset (-3.55 Mg ha-1), except in the even-

sized FST (-2.09 Mg ha-1). The models were not overfitted, as SSR was < 1.10, which is 

deemed an acceptable limit. 

In the specific models developed for the even- and uneven-sized FST (Figure 6a), the 

RMSD values for the full dataset, even-sized and uneven-sized FST were reduced to 34.9, 

34.6 and 35.3 Mg ha-1, respectively, compared to 37.4, 37.1 and 37.6 Mg ha-1, respectively, 

in the general model (Figure 5). The MD values also improved and the SSR value was < 1.10, 

which showed that the FST specific models developed for even- and uneven-sized FST were 

not overfitted. 

 

    

 

Field 

plots 

AGB (Mg 

ha-1) 

𝑄𝑀𝐷 

(cm) 𝐺𝐶 Trees ha-1  

Full dataset 

Min  

 

244 

2.5 0.1 0 117 

Mean 89.5 9.6 0.54 20091 

Max 410.5 38.1 0.99 182522 

SD 74.1 8.7 0.35 24587 

Even 

(𝐿𝑐𝑣 < 0.33) 

Min  

 

120 

2.5 0.1 0 117 

Mean 105.2 11.7 0.41 17564 

Max 410.5 38.1 0.99 182522 

SD 89.6 9.7 0.32 27215 

Uneven 

(𝐿𝑐𝑣 > 0.33) 

Min  

 

124 

6.9 0.1 0 157 

Mean 74.2 7.5 0.67 22538 

Max 271.4 38.0 0.99 110774 

SD 50.8 7.3 0.33 21575 

Open canopy 

(𝐿𝑠𝑘𝑒𝑤 > 0) 

Min  

 

125 

2.5 0.1 0 117 

Mean 51.5 5.7 0.51 28624 

Max 271.4 38.1 0.99 182522 

SD 46.6 8.2 0.40 26765 

Closed canopy 

(𝐿𝑠𝑘𝑒𝑤 < 0) 

Min  

 

119 

12.4 2.0 0.10 314 

Mean 129.4 13.5 0.59 11129 

Max 410.5 32.4 0.99 108805 

SD 76.7 7.8 0.27 18274 
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Figure 5. Accuracy assessment of the observed and predicted aboveground biomass of the 
general model. 𝐿𝑐𝑣: L-coefficient of variation of LiDAR heights; 𝐿𝑠𝑘𝑒𝑤: L-skewness of LiDAR 
heights; RMSD: relative mean square difference; MD: mean difference; SSR: sum of square 
ratio. 

Further improvements were observed when the dataset was divided into closed and open 

canopy FST (Figure 6b). In this case, the RMSD values for the full dataset, closed canopy 

and open canopy were much better (32.2, 33.5 and 32.9 Mg ha-1, respectively) than both 

general models (Figure 5) and the FST specific model developed for the even- and uneven-

sized FST (Figure 6a). The MD value also improved and the SSR value was < 1.10, which 

was deemed an acceptable level of divergence. 

 

4 DISCUSSION 

4.1 Improving the estimation of the Gini coefficient of tree size inequality (I) 

The Gini coefficient of tree size inequality has been used for structural heterogeneity 

assessment of forests and is considered as one of the best indicators (Lexerød and Eid 2006; 

Lei et al. 2009; Cordonnier and Kunstler 2015). While characterising the various FST using 

𝐺𝐶, Valbuena et al. (2013) found that the size of the plots affected the 𝐺𝐶 estimates. Matos 

(2014) later employed various stabilisation criteria for the 𝐺𝐶 of tree size inequality but the 

study was based on field information only and did not provide satisfactory results. Therefore, 

this study has endeavoured to tackle the question of plot size effects on 𝐺𝐶 estimates from 

the perspective of its practical estimation using ALS data. For reliable information, an 

optimal plot size is always needed for any forest attribute, including 𝐺𝐶, because 
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Figure 6. Accuracy assessment of the observed and predicted aboveground biomass of 
specific models developed for (a) even- and uneven-sized forest structural types (FST), and 

(b) closed and open canopy FST. 𝐿𝑠𝑘𝑒𝑤: L-skewness of LiDAR echo heights; 𝐿𝑐𝑣: L-coefficient 
of variation of LiDAR echo heights; RMSD: relative mean square difference; MD: mean 
difference; SSR: sum of square ratio. 
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inappropriate plot sizes provide unreliable results that may lead to inaccurate forest 

management decisions (Eid 2000). In this study, two criteria were imposed to optimise the 

plot size and sample size for reliable 𝐺𝐶 estimation; (1) stabilisation of the 𝐺𝐶 estimation 

from field information, and (2) maximising the absolution correlation of 𝐺𝐶 values with the 

ALS metrics. The 𝐺𝐶 value stabilises when the size of the plot or the stem density increases 

(Figure 3). In the smaller plot sizes (𝑠 < 6 m radius) or sample sizes (𝑛 < 15 tree), 𝐺𝐶 

estimation is unstable (see Figure 3 in I). This is because the smaller number of trees within 

the smaller radius are not representative of the total population. The stabilisation of the 𝐺𝐶 

estimates started at plot size 𝑠 = 6 m or at sample size 𝑛 = 15 trees, which should be the 

minimum plot size or sample size for stable 𝐺𝐶 estimation when all the original field plots 

decreased below the 𝐺𝐶̅̅ ̅̅
𝑑𝑖𝑓𝑓 < 0.05 limit and fulfilled the first criterion (Figure 3). However, 

the minimum plot size 𝑠 also depends on the stand density 𝑁 of the original field plot, which 

can be adjusted according to equation 3. This conclusion brings generality in the method used 

in this study and can be extended to other forest areas. 

Maximising the relationship between the 𝐺𝐶 calculated from field information and ALS 

metrics was assumed to be a suitable criterion to optimise the plot size and to obtain a reliable 

ALS-assisted 𝐺𝐶 estimation. This assumption was correct because the absolute correlation  

|𝑟| of 𝐺𝐶 values with the ALS metrics, in particular the most correlated metrics (i.e. Skew 

and CRR), followed a convex curve (see Figure 4a in I) where it was possible to select the 

optimal plot size by searching for the maximum correlation (Table 3). Similarly, the less 

correlated metrics (i.e. StdDev, cover, lower height percentiles) showed that once 𝐺𝐶 is 

stabilised under the first criterion, the correlation remains unchanged. Therefore, it was 

important to impose the first criterion and select the minimum plot size or sample size that 

could represent the total population and produce a stable 𝐺𝐶 estimation (Motz et al. 2010). 

Thus, plot sizes smaller than 𝑠 < 5 𝑚 were dismissed under the first criterion (Figure 3 and 

Figure 4 in I). When integrating the first and second criteria, the optimal plot size and sample 

size in this study was found to be 9–12 m radius (250–450 m2 area) and 30–60 trees, 

respectively (Table 3). However, the optimal plot size also depends on the spatial pattern of 

the trees, species diversity and the density of the stands (Häbel et al. 2019). The optimal plot 

size obtained in this study is similar to the plot sizes adopted in current forest inventory 

practices (Tomppo et al. 2017; Maltamo et al. 2019). Further research should be carried out 

to evaluate how different combinations of ALS metrics could be used for plot size 

optimisation and accurate 𝐺𝐶 predictions.  

In national forest inventories (NFI), the sampling design is optimised to obtain highly 

accurate results within a given fixed budget or to obtain results with a desired precision at 

the lowest cost (Päivinen 1987). The optimal sampling design is an important goal of NFI 

(Mandallaz 2007), however, the usability of NFI plots is limited in management inventories 

due to heterogenous plot types and sizes, and to the small sampling intensity. If the plot size 

is small, it may have negative effects, for example, on the accuracy of stem diameter 

distributions estimated from ALS (Maltamo et al. 2019). On the other hand, if the plot size 

is larger than the required size, it will increase the cost, time and efforts of forest inventories 

(Chytrý and Otýpková 2003), and different stand conditions may also aggregate (Coomes 

and Allen 2007b). The optimal plot size also depends strongly on the purpose of the forest 

inventory, the attribute of interest and other various factors, such as time used to construct 

and arrange the plots, tree measurements and the disparity of each of the variables between 

plots (Henttonen and Kangas 2015). For example, variables such as land use change can be 

determined at a very small plot scale but larger plots are required for biomass and volume 

estimations. Therefore, prioritisation of the variable of interest is needed before plot size 
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optimisation. Häbel et al. (2019) provided similar arguments and included additional factors, 

such as stand density, diameter distribution, basal areas and spatial structures in their 

analyses. Various studies have been carried out to determine the optimal plot size for different 

forest attributes. For example, Lombardi et al. (2015) conducted a study to select an optimal 

plot size s* for the indicators that describe heterogeneity in old growth stands, such as number 

of large and dead trees, and the total volume of living and dead trees. They found that 13–15 

m radius was the optimal plot size, although this could be due to the lower stand density 𝑁 

in their study (according to equation 3). Similarly, Tomppo et al. (2017) studied ALS-assisted 

forest resource estimation (volume and basal area) and recommended concentric circular 

plots with a maximum 9 m outer radius and 5.64 m inner radius to reduce the cost of forest 

inventories, but they also appraised that a fixed radius plot with a 9 m maximum radius is 

still feasible for ALS-assisted inventories. Maltamo et al. (2019) also estimated and compared 

stand level stem diameter distributions using various plot sizes (200, 400, 900 and 1600 m2) 

and concluded that 200–400 m2 is the optimal plot size for stand level estimation. Increasing 

the plot size also shows an averaging effect on some of the forest attributes, such as biomass 

and volume (Gobakken and Næsset 2008; Ruiz et al. 2014), however, in a forest structural 

assessment, the averaging effect is not applicable (Coomes and Allen 2007b). In fact, 

variables such as species richness increase as the size of the plot increases (Humphrey et al. 

2000; Otypková and Chytry 2006).  

The relationship of 𝐺𝐶 values with ALS metrics is not affected by ALS point density, 

unless the point density 𝑑 is < 3 points m2 (see Figure 6 in I). Similar results have been 

observed when the effects of point density on biomass and volume estimations have been 

evaluated (Maltamo et al. 2006; Ruiz et al. 2014), which demonstrates that varying ALS point 

density has no real effect in practical applications. Based on these results, all national 

programs that render ALS data with a point density < 3 points m2 are unsuitable for the 

structural heterogeneity assessment of forests. Indeed, Valbuena et al. (2017b) found that the 

understorey development class was critically omitted due to the lower point density. 

Therefore, to ensure that ALS data is suitable for forest structural assessments in the future, 

the point density must be increased to at least 3 points m2 in national ALS survey 

programmes. 

4.2 Simplifying the cross-bioregional assessment of FST (II) 

Forest structural types assessment is important for wildlife habitat management (Hagar et al. 

2020), biodiversity (Lelli et al. 2019), biomass and carbon storage (Clark and Clark 2000; 

Marvin et al. 2014), natural dynamics in forests, such as thinning and disturbances (Coomes 

and Allen 2007a) or if these dynamics are artificially modified (Valbuena et al. 2016a). In 

this study, various FST were identified in a simple two-tier approach by utilising four forest 

attributes – 𝐺𝐶, 𝐵𝐴𝐿𝑀, 𝑄𝑀𝐷 and 𝑁– obtained from the Boreal, Mediterranean and Atlantic 

biogeographical regions, which made it feasible for a regional assessment of the FST. In the 

upper tier, 𝐺𝐶 and 𝐵𝐴𝐿𝑀 were used to identify the reversed J-type, single storey and multi-

layer FST. These two attributes have been suggested by Valbuena (2015) as bivariate 

descriptors of FST. In the lower tier, traditional attributes, such as 𝑄𝑀𝐷 and 𝑁, were used to 

identify forest structures according to the development stage and stand density. The 𝑄𝑀𝐷 

separates young and mature FSTs while 𝑁 is used to separate sparse and dense FST, 

respectively. For this purpose, HCA (an unsupervised method) was used and all individual 

observations were assigned to five clusters/groups (Bien and Tibshirani 2011). Then, CART 
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analysis was used to identify the exact threshold values of the four forest attributes and their 

importance in determining the FST (Breiman et al. 1984). Lastly, the kNN method (Venables 

and Ripley 2001) was used to predict the field information-based FST from the ALS data. 

The threshold values for the four forest attributes were obtained from HCA and CART 

analyses, and was used for the forest structural classification (Table 4; see Figure 2 in II). 

The first nodes in the coniferous and deciduous forests were based on the 𝐺𝐶 and 𝐵𝐴𝐿𝑀, 

respectively, which shows that these two attributes were the most important (Gove, 2004; 

Lexerød and Eid, 2006) in the forest structural classification, as proposed by Valbuena 

(2015). The 𝐺𝐶 values obtained in both coniferous (𝐺𝐶 = 0.51) and deciduous (𝐺𝐶 = 0.57) 

forests were very close to the theoretical 𝐺𝐶 values (𝐺𝐶 = 0.50) used by Valbuena et al. 

(2012) as a boundary line to separate even- and uneven-sized FST. Thus, multi-layered FST 

are observed around these values, and 𝐺𝐶 values > 0.50 denote a reversed J-type FST, while  

𝐺𝐶 < 0.50 identify an even-sized distribution, such as single storey FST (Duduman 2011; 

Valbuena et al. 2013). Simpson et al. (2017) obtained a similar forest structural classification 

in deciduous forests, however, their classification was based on vertical gap probability. The 

empirical values of 𝐵𝐴𝐿𝑀, which have not been identified in the literature (Valbuena 2015) 

were obtained and used in the forest structural classification in this study. High 𝐵𝐴𝐿𝑀 values 

separate the mature, sparse reversed J-type/peaked reversed J-type FST (#1.2), while lower 

𝐵𝐴𝐿𝑀 values identify closed canopies such as those present in mature and single storey FST 

(#2.2). Traditional forest attributes, such as 𝑄𝑀𝐷 and 𝑁, were useful to identify the 

mature/young and dense/sparse FST in the lower tier (Dodson et al. 2012), e.g. the separation 

of the very mature single storey (#2.3: Figure 7) in the Valsaín forest (Spain: Mediterranean 

bioregion), which contains mature trees of approximately 100 years old, by 𝑄𝑀𝐷 > 36.6 𝑐𝑚 

(Valbuena et al. 2013), or the separation of the young, dense single storey (#2.1) by 𝑁 >
1339 and 1998 trees   ha−1 in the coniferous and deciduous forests, respectively.  

For regional assessment and mapping, ALS is a useful remote sensing technique for FST 

assessment due to its large-scale coverage and ability to produce 3D canopy information 

(Zimble et al. 2003; Latifi 2012; Asner and Mascaro 2014). Therefore, it is important to 

predict field information-based forest structures from ALS data. The observed and predicted 

FST in the coniferous and deciduous forests, respectively, are shown in Table 6. In general, 

the estimations were unbiased, and the errors mostly occurred between structurally similar 

FST, for example, the mature single storey (#2.2) was misclassified as mature sparse multi-

layered (#3.2). As these FST are typically difficult to discriminate by forest attributes, the 

poor prediction from ALS was not surprising. However, such misclassification of structurally 

similar FST has less impacts in practical forest management. The overall accuracy 𝑂𝐶 and 

kappa coefficient 𝑘 in the deciduous forest (𝑂𝐶 = 0.87 and 𝑘 = 0.81) was greater than the 

coniferous forest (𝑂𝐶 = 0.73 and 𝑘 = 0.64), which may be due to differences in the ALS 

data. These results are particularly important for organisations involved in forest monitoring 

and conservation, biodiversity and landscape planning, and can assist in the development of 

ALS-based essential biodiversity variables (Pereira et al. 2013), regional forest structural 

maps (Adhikari et al. 2020), effective forest management policies and decisions towards 

sustainable development goals (Vihervaara et al. 2017). 

Remote sensing data other than ALS have also been used in the local and global mapping 

of various attributes that include forest structures. For example, Pippuri et al. (2016) 

employed a combination of ALS and Landsat images, and various forest land attributes were 

classified based on national (forest land, agricultural land and built-up areas) and FAO (Food 

and Agriculture Organization) land use land cover classifications (forest and non-forest 

areas), peatland types (open, pine and spruce) and site types (poor, medium and rich). They 
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concluded that the prediction of these land attributes could be incorporated into forest 

management inventories in Finland. Adhikari et al. (2020) also used a combination of ALS 

and Landsat time series images, and found that the spectro-temporal metrics of Landsat 

images that are sensitive to tree species and forest density improved the model accuracies. 

Various researchers have also used Interferometric Synthetic aperture radar (InSAR) data to 

study vegetation properties (Ranson et al. 1995; Harrell et al. 1997; Castel et al. 2001) as the 

InSAR is an active remote sensing platform and has the advantage of strong penetration 

capability through clouds, high temporal and spatial resolution, and vast geographical 

coverage (Næsset et al. 2011). Indeed, Castel et al. (2002) found a significant relationship 

between InSAR data and stand biomass and density. Thus, InSAR application is a useful 

alternative to ALS for regional biomass mapping, particularly in countries where ALS data 

are unavailable due to the high cost (Le Toan et al. 2011). The use of unmanned aerial 

vehicles (UAV) equipped with digital cameras (multi- or hyperspectral) or with ALS sensors 

has recently increased in the forest sector (Colomina and Molina 2014; Sankey et al. 2017), 

which could also be useful in forest structural heterogeneity assessments. Ni et al. (2015) 

reported exceptional levels of accuracy when calculating tree heights, and Alonzo et al. 

(2018) achieved similar accuracies when modelling tree density, basal area, aboveground 

biomass, and species composition in boreal conditions. While UAV-based forest inventories 

are limited to small areas due to the high cost, they could be particularly effective, for 

example, in predicting the diameter distribution or in the determination of 𝑑𝑏ℎ (Puliti et al. 

2020). 

4.3 Aboveground biomass predictions in ALS-based direct FST (III) 

Pre-stratification of data has been used to examine whether it could improve estimates of 

forest characteristics. In Norway, models for forest attributes are constructed for pre-

classified strata. For the pre-classification of strata, visual interpretation of stereo-images and 

age classes, such as young stands, mature stands or mature stands dominated by spruce or 

pine are used. These strata are further divided on the basis of site quality. Errors always occur 

in the pre-classification of images, although various stand characteristics can be determined 

by this two-stage procedure with better accuracy than with conventional methods (Næsset 

2002). Indeed, Maltamo et al. (2015) pre-classified their data based on tree species and stand 

development classes. Pre-stratification based on aerial images did not improve the model 

accuracies, as the optical imagery was not able to detect the small variations at the plot level, 

although the ALS-based pre-stratification (into mature and young stands) resulted in a slight 

improvement. Similarly, ALS-based pre-stratification can also reduce the sampling efforts 

by up to 41 % (de Almeida Papa et al. 2020). 

In this study, a two-stage procedure was adopted. The ALS data was used for pre-

stratification instead of the optical images, as ALS is one of the key technologies that can 

provide better results (than optical images), produce detailed canopy information, describe 

the biophysical stand properties, monitor forest changes over large geographical areas and, 

most importantly, predict various forest attributes with excellent levels of accuracy (Maltamo 

et al. 2004; Næsset and Gobakken 2008; Valbuena et al., 2013). In the pre-stratification stage, 

various FST are initially detected directly from ALS data (Valbuena et al. 2017b) because 

structural heterogeneity is an important morphological trait of ecosystems (Fahey et al. 2019) 

and it affects various ecological processes, such as carbon sequestration, nutrient cycling and 

species interactions (Brokaw and Lent 1999; McElhinny et al. 2005). Next, the aboveground 
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biomass predicted in each FST was compared with the AGB prediction in the full dataset 

without pre-stratification.  

Two L-moment ratios of the ALS echo heights (𝐿𝑐𝑣  and 𝐿𝑠𝑘𝑒𝑤) were used for the pre-

stratification as they characterise tree size inequality (Valbuena et al. 2013) and dominance 

(Lefsky et al. 2002), and are useful to separate even- and uneven-sized, and open and closed 

canopy FST, respectively. In the previous study by Valbuena et al. (2017b), 𝐿𝑐𝑣 = 0.50 was 

used to represent maximum entropy, while 𝐿𝑐𝑣 = 0.33 was used for the first time in my study. 

Mathematical proofs were provided to demonstrate that if a two-dimensional attribute, such 

as basal area, is used to calculate an indicator in a vicinity (e.g. 𝐺𝐶), then maximum entropy 

is reached at 0.50. However, if one-dimensional attributes, such as tree diameter or ALS echo 

heights, are used, maximum entropy is reached at 0.33 in the same area (see Appendix A in 

III). The diameter and basal distribution in the even- and uneven-sized FST, separated by 

𝐿𝑐𝑣(𝐺𝐶 of LiDAR) = 0.33 and 𝐺𝐶 of basal area = 0.50, also illustrates the empirical 

equivalence of the ALS and field approaches (see Figure 2 in III). Figure 4 shows how the 

different forest structures can be separated by 𝐿𝑐𝑣 = 0.33 and 𝐿𝑠𝑘𝑒𝑤 = 0. The majority of the 

seedlings, young and mature development classes are below 𝐿𝑐𝑣 = 0.33 because they 

backscatter high ALS returns due to even-sized diameter distribution. As a consequence, they 

exhibit a small variance in ALS echo heights. On the other hand, seedlings or multi-layered 

development classes, which have uneven diameter distributions, are distributed above 𝐿𝑐𝑣 =
0.33, they have a wide variance in ALS echo heights due to the low ALS returns. The sapling 

development class, which is usually even-sized and where the 𝐺𝐶 of basal is below 0.50 

(Valbuena et al. 2013), was separated out as uneven-sized (𝐿𝑐𝑣 > 0.33). Therefore, 𝐿𝑠𝑘𝑒𝑤  is 

an important additional metric because the 𝐿𝑐𝑣  and 𝐺𝐶 values of basal are only similar if the 

greater  𝐿𝑐𝑣  values are due to canopy gaps (Stark et al. 2012). Thus, by looking at the 𝐿𝑠𝑘𝑒𝑤  

values, the saplings are separated as open canopies (𝐿𝑠𝑘𝑒𝑤 > 0). In addition, the shelterwood 

development class was not properly separated, which could be due to the omission of the 

understorey vegetation and the lower point density of the ALS data, which could be improved 

by increasing the ALS point density (Ruiz et al. 2014). The seedlings, saplings, seed tree, 

shelterwood and multi-storey development classes all show values above 𝐿𝑠𝑘𝑒𝑤 > 0 (open 

canopy FST) as only a small portion of the ALS returns are due to sparse vegetation. The 

young thinning, advanced thinning and mature development classes exhibit less gaps and a 

greater proportion of ALS returns as 𝐿𝑠𝑘𝑒𝑤  is below 0 (closed canopy FST). 

In order to compare the AGB predicted from the full dataset without pre-stratification 

with the AGB predicted in the pre-classified FST (even- and uneven-sized, and open and 

closed canopy FST), the first step was the a priori selection of ALS predictors, as suggested 

by Bouvier et al. (2015). From various alternatives, such as best subset, stepwise, and most 

similar neighbour (MSN) selection methods (Valbuena et al. 2017a), the best subset was 

selected, as it is the most frequent method for variable selection (Hudak et al. 2006). Six ALS 

metrics were selected from more than 100 metrics from the full dataset, as well as from each 

FST (see Table 3 in III) because it is important to reduce the number of meaningful ALS 

metrics in remote sensing to avoid extensive model selection procedures (Hudak et al. 2006; 

Bouvier et al. 2015; Knapp et al. 2020). In the even-sized (𝐿𝑐𝑣 < 0.33) and closed canopy 

(𝐿𝑠𝑘𝑒𝑤 < 0) FST, the average percentile (P50), which represents the average tree height and 

cover metrics that are related to stand density, were important compared to the uneven-sized 

(𝐿𝑐𝑣 > 0.33) and open canopy (𝐿𝑠𝑘𝑒𝑤 > 0) FST where the high percentiles (P70, P99) that 

represent the dominant trees and variance were selected. These differences in ALS metrics 

were very relevant in AGB modeling and in the changes in subsequent AGB predictions.  



40 

 

The AGB predictions in the general model and in the FST specific models were compared 

using the widely used RMSD and MD (Van Aardt et al. 2008; Straub et al. 2013; Räty et al. 

2018) with the inclusion of an additional restriction, such as SSR, to avoid overfitting of the 

models (Tedeschi 2006; Mauro et al. 2016). From the perspective of RMSD and MD, the 

results might look reliable but the models could be overfitted (Valbuena et al. 2017b). 

Therefore, the additional restriction (i.e. SSR) employed here was important for the most 

reliable results. As assumed, the AGB predictions in the FST specific models (Figure 6) were 

improved in comparison to the general model (Figure 5), which could be due to differences 

in the ALS metrics, as they contribute differently to the improvement in AGB predictions 

(Knapp et al. 2020). The RMSD and MD values for the even- and uneven-sized FST 

improved to 34.6 and 35.3 Mg ha-1 in the FST specific models (Figure 6a) as compared to 

37.1 and 37.6 9 Mg ha-1 in the general model (Figure 5). In the open and closed canopy FST, 

the RMSD and MD values further improved to 33.5 and 32.9 Mg ha-1 (Figure 6b) from 35.6 

and 35.3 9 Mg ha-1 in the general model (Figure 5). Similar improvements were also observed 

for the full dataset; the RMSD and MD values improved to 34.9 and -2.52 Mg ha-1 (Figure 

6a) and 33.2 and -2.37 Mg ha-1 (Figure 6b) in the FST specific models, and from 37.4 and -

3.55 Mg ha-1 in the general model (Figure 5). SSR is used to adjust the increase in 

unexplained variance or decrease the explained variance to a preferable limit (e.g. 10 %) and 

should be < 1.10 to avoid overfitting (Lipovetsky 2013). The SSR value in this study was < 

1.10 in all models. The improvement in the AGB predictions were still minor, as observed 

by Maltamo et al. (2015) for specie-specific attributes, such as volume, but the differences in 

the selection of ALS metrics were critical in this case. Further research could focus on how 

ground-based metrics of forest structures are related to ALS metrics and whether AGB 

predictions could be improved if forest structure-related ALS metrics are used in modelling 

instead of pre-stratification. This study also suggests that the most relevant ALS metrics 

should be selected as predictor variables for AGB predictions. 

4.4 Future Research work 

1. In this doctoral research, the relationship between 𝐺𝐶 of tree size inequality and ALS data 

was evaluated under boreal conditions, which contained only three tree species (spruce, 

pine and birch). For the other biogeographical regions, a similar conclusion can be drawn 

that plot size has a greater influence than stand density and scan density of the ALS data, 

as the 𝐺𝐶 compares 𝑑𝑏ℎ or basal areas of individual trees growing in the vicinity and is 

not affected by species diversity. However, this still needs to be investigated in other 

biogeographical regions with more diverse forests and a wider range of stand 

development classes. 

2. For FST prediction, only ALS data was used in these studies. However, to predict forest 

structural heterogeneity, the performance of other remote sensing approaches that provide 

tree height profiles (e.g. InSAR, NASA's Global Ecosystem Dynamics Investigation 

(GEDI), and a combination of InSAR, GEDI and UAV) should not be overlooked, and 

could be used as alternatives in developing countries where ALS data is still not available. 

3. Various ALS metrics have been used in this doctoral dissertation for the structural 

heterogeneity assessment. Further evaluation is needed to show how these ALS metrics 

can be useful in the development of essential biodiversity variables related to ecosystem 

structure, from the local to the global scale.  
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4. The four forest attributes – 𝐺𝐶, BALM, 𝑄𝑀𝐷 and 𝑁 that were used in II for the 

bioregional assessment of forest structure, the estimation of variables, such as 𝑄𝑀𝐷 and 

𝑁, and how changes in plot size affect their estimation, have been well studied, and 

the 𝐺𝐶 of tree size inequality was evaluated in I. However, the estimation of 𝐵𝐴𝐿𝑀 and 

how various factors, such as the plot size, stand density and scan density affect the 𝐵𝐴𝐿𝑀 

estimation, is still unknown and needs to be studied. 

5. The potential of the FST assessed in these studies could be investigated to determine 

whether they could improve the diameter distribution assessment, which is a routine 

operation in forest inventories that provides timber biomass and volume estimations 

across different size classes. 

 

5 CONCLUSIONS 

The following conclusions can be outlined from each objective of this study. 

1. The Gini coefficient (𝐺𝐶) of tree size inequality is one of the best indicators of forest 

structural heterogeneity. This study examines how the 𝐺𝐶 values and their relationship 

with ALS metrics are affected by plot size, stand density and point density of the ALS 

data. Plot sizes have a greater effect on the relationship between 𝐺𝐶 and the ALS metrics, 

as compared to the number of trees (stand density) and ALS point density. The 𝐺𝐶 

estimation is very unstable in the smaller plot sizes because they are unrepresentative of 

the total area, while the number of trees (sample size) within the smaller plot sizes also 

under-represents the total population. As the size of plots increases, its effects decrease 

because larger plot sizes and the greater number of trees (sample size) better represent the 

total population. For the optimal plot size and sample size, two criteria were implemented; 

stabilisation of the 𝐺𝐶 value, and maximising the relationship between 𝐺𝐶 values and the 

ALS metrics. In boreal conditions, a minimum 6 m radius plot size (113 m2) and 15 trees 

are needed to achieve a stable 𝐺𝐶 estimation. The correlation between the 𝐺𝐶 values and 

the ALS metrics was described by a convex curve and the maximum correlation was 

found between plot sizes that ranged from 9 to 12 m radius (250–450 m2 area), which is 

the optimal plot size for a reliable ALS-assisted 𝐺𝐶 estimation. However, the plot size 

can also be adjusted in forests with different stand densities using a basic relationship 

between stand density and plot size. In regard to the point density effects, it was found 

that point density had no effect on the relationship between 𝐺𝐶 values and ALS metrics, 

unless the point density is < 3 points m2. Thus, to make ALS data suitable for the structural 

heterogeneity assessment of forests, nationwide ALS point densities must be increased to 

at least 3 points m2. As this study was based on data from boreal ecosystems, the results 

can only be extended to the boreal region. Similar studies must be conducted in other 

biogeographical regions with more diverse forests and a wider range of development 

classes.  

2. The study based on four forest structural attributes – 𝐺𝐶, BALM, 𝑄𝑀𝐷 and 𝑁– obtained 

from the  –Boreal, Mediterranean and Atlantic biogeographical regions concludes that 

these four forest structural attributes can be used in a simple two-tier approach for the 

bioregional FST assessment that covers both coniferous and deciduous forests. In the 

upper tier, 𝐺𝐶 and 𝐵𝐴𝐿𝑀 (which identified reversed J-type, single storey and multi-

layered FST) are useful, while in the lower tier, the most traditional attributes, 𝑄𝑀𝐷 and 



42 

 

𝑁, separated the young and mature, and sparse and dense FST. These FST can also be 

reliably predicted from the ALS data. The methodology developed for the FST 

assessment in this study can be adopted across other biogeographical regions and it can 

also be useful to assess the effects of management practices. For countries where ALS 

data is not available, other remote sensing approaches, such as InSAR, NASA’s GEDI 

and UAV could be used as alternatives to determine the different FST. 

3. L-coefficient of variation (𝐿𝑐𝑣) and L-skewness (𝐿𝑠𝑘𝑒𝑤) are two prominent ALS metrics 

that can be used as analogous to the 𝐺𝐶 of tree size inequality to detect various FST 

directly from ALS data. A threshold value of 𝐿𝑐𝑣 = 0.33 should be used to represent 

maximum entropy, rather than the 0.50 value used in previous literature, provided the 

inequality is calculated from tree heights or 𝑑𝑏ℎ. Lower 𝐿𝑐𝑣  (<0.33) and 𝐿𝑠𝑘𝑒𝑤 (<0) values 

separate the even-sized and closed canopy FST, while higher values separate the uneven-

sized (𝐿𝑐𝑣 > 0.33) and open canopy (𝐿𝑠𝑘𝑒𝑤 > 0) FST. The aboveground biomass 

predicted in these FST using their specific models were evaluated and compared with the 

AGB prediction in the full dataset without pre-stratification using a general model. The 

aboveground biomass predictions in the FST specific models were minor as compared to 

the general model but the ALS metrics selected in each model using the best subset 

procedure were critical. The selection of the relevant ALS metric in any model could play 

a vital role in AGB predictions in large geographical areas. Therefore, this study suggests 

that forest areas and the selection of the most relevant ALS metrics should be pre-

stratified before AGB predictions. This would further improve our understanding of the 

structural and AGB dynamics within a large geographical area. 
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