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ABSTRACT 
 
 
A wide range of biotic and abiotic factors, operating over different time perspectives and 
intensities, cause defoliation and a rapid decrease in the crown size of trees. Scleroderris 
canker disease [Gremmeniella abietina (Lagerb.) Morelet] has caused widespread crown 
reduction and tree mortality in Scots pine in forests in Scandinavia during the last three 
decades. In the 1980's, attempts were made to show, on the basis of the higher foliar N and 
S concentrations of affected pines in the diseased area, that sulphur and nitrogen deposition 
predispose trees to G. abietina. Unfortunately, in many studies on defoliated trees, 
exceptionally high or low needle mineral nutrient concentrations are still often interpreted 
as one of the causes of tree injury and not, conversely, as the result. In this thesis, three 
different field experiments, with foliar analysis as the main study method, were conducted 
in order to asses the possible long-term effects of living crown reduction on the needle 
nutrient concentrations of Scots pine trees in southern Finland. The crown ratio and length 
of the living crown were used to estimate the amount of defoliation in the reduced canopies. 
The material for the partial studies was collected and a total of 968 foliar samples were 
analysed individually (15-17 elements/sample) on a total of 488 sample trees (140 diseased, 
116 pruned and 232 control trees) during the years 1987-1996 in 13 Scots pine stands. 

All the three experiments of this thesis provided significant evidence that severe 
disease-induced defoliation or artificial pruning of the living branches can induce long-
lasting nutritional changes in the foliage of the recovering trees under the typical growing 
conditions for Scots pine.The foliar concentrations of all the 17 mineral nutrients/elements 
analysed were affected, to a varying degree, by artificial pruning during the following three 
years. Although Scots pine, as an evergreen conifer, is considered to have low induced 
chemical responses to defoliation, this study proved experimentally under natural forest 
conditions that severe artificial pruning or disease-induced defoliation of Scots pine trees 
may induce biologically significant changes in the concentrations of most of the important 
macro- and micronutrients, as well as of carbon, in refoliated needles.  
 
Keywords: Foliar analysis, defoliation, needle loss, pruning, nutrients, Pinus sylvestris, 
Gremmeniella abietina 
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1 INTRODUCTION 
 
 
A living healthy crown is the basis for the whole photosynthetic energy production of trees. 
Without the carbon assimilation ability of the chlorophyll in the foliage of the crown or in 
the other areas of the trees, e.g. chlorophyll underneath the bark (see e.g. Pfanz et al. 2002, 
Berveiller et al. 2007), there would be no energy for binding carbon in the growth processes 
and to keep the tree alive. Different tree species have a wide range of canopy structures. 
One parameter used in ecological modelling to estimate the crown size of evergreen 
conifers is the living crown ratio (see e.g. Hynynen 1995, Vanninen and Mäkelä 2000, 
Medhurst and Beadle 2001, Grazer et al. 2004, Lehtonen 2005, Mäkelä and Valentine 
2006). The crown ratio, expressed as the percentual proportion of the living green crown in 
relation to the total height of a tree, is easy to measure. In small seedlings and saplings the 
photosynthetic foliage starts right from the tree base, and the living crown length might be 
up to 100% of the tree length. In the case of many conifer genera, e.g. Picea, Abies, Thuja, 
Tsuga and Juniperus the crown ratio of the trees can easily be over 90%, even in mature 
trees. This is also valid for the species of Pinus spp, especially in the case of open-grown 
trees. 

In the 1980's the media and the scientific world were very concerned about the state and 
health of global forests. The effects of air pollution, i.e. forest death, defoliation/needle loss 
of trees, the impact of acidic deposition on the soil, water and vegetation, and the "new-
type" of forest decline, were widely mentioned both in the news headlines and in the titles 
of scientific papers. Extensive monitoring of forest condition and major environmental 
projects were started in many European countries in the middle of the 1980's, including 
Finland (Mathy 1988, Roberts et al. 1989, Hanisch and Kilz 1990, Kauppi et al. 1990, 
Merilä et al. 2007). In the early 1980's in Sweden and Finland, a fungal disease, 
Scleroderris canker [Gremmeniella abietina (Lagerb.) Morelet], spread rapidly and caused 
a considerable amount of living crown reduction and tree mortality in Scandinavian Scots 
pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta Dougl. Ex Loud.) forests 
(Kurkela 1981, Karlman 1984, Karlman et al. 1994, Kaitera and Jalkanen 1995, Hansson 
1996). The disese epidemic was so large and severe in Finland that tree defoliation and 
mortality was clearly visible in the countrywide 8th National Forest Inventory data and 
vitality surveys of Scots pine (Nevalainen and Yli-Kojola 1990, Jukola-Sulonen et al. 
1990). The brown colour of the diseased pines was even visible in the satellite images taken 
two decades ago (Häme 1991). 

An extensive area of pine forest affected by Gremmeniella abietina was reported in 
eastern Lapland at the end of the 1980’s (Kaitera and Jalkanen 1994). The epidemic was 
explained in some other quarters as nutritional disturbances caused by air pollution 
(especially sulphur emissions) from copper-nickel smelters on the Kola Peninsula, NW 
Russia (e.g. Tikkanen 1991). Attempts were made to show, on the basis of the higher foliar 
N and S concentrations of affected pines in the diseased area, that sulphur and nitrogen 
deposition predispose trees to G. abietina. Even though no correlation was found between 
acidic deposition or other pollutants and the occurrence of Gremmeniella abietina in 
Europe or in USA (e.g. Donaubauer 1984, Godbold and Hüttermann 1994), the Finnish 
media frequently claimed that the connection between air pollution and the incidence of the 
Gremmeniella disease was "an established fact" in the late 1980's and early 1990's. Later on 
the 1990's, the scientific and media debate about the hypothesised connection gradually 
settled down, as the disease epidemic in Scandinavia slowly abated. In many studies 
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concentrating on Gremmeniella abietina (e.g. the following dissertations alone: Karlman 
1984, Barklund 1989, Ylimartimo 1993, Hellgren 1995, Ranta 1995, Hansson 1996, 
Petäistö 1996, Kaitera 1997), no clear evidence was found to link pollution effects with the 
susceptibility or disease incidence of pine forests. The disease itself, however, has not 
disappeared from the forests of Scandinavia. In Sweden, for example, the most serious 
outbreak of Gremmeniella abietina so far, has been estimated to have caused damage over 
an area of 484 000 ha of pine forests during the years 2001-2003 (Wulff et al. 2006). In 
Finland, symptoms of G. abietina were found in the years 2004-2005 in 215 400 ha of 
forest, of which 205 100 ha were dominated by Scots pine (Korhonen and Nevalainen 
2007). All the above studies clearly demonstrate that, even when the threat of air pollution 
effects on forest health has strongly diminished, the number of Scots pine trees with 
severely reduced living crowns due to G. abietina has not decreased. 

Foliar analysis is a widely used method for evaluating nutritional and environmental 
status of trees, although with some reservations (Morrison 1974, Ballard and Carter 1986, 
Rautio 2000, Brockley 2001, Luyssaert et al. 2004, Mertens et al. 2005). Analysis of the 
elemental composition of foliage can provide additional information as a biomonitoring 
method in special cases (Manning & Feder 1980, Oliva and Mingorance 2006). In a few 
studies, however, higher or lower needle nutrient concentrations have been reported in 
defoliated trees following the loss of needles through artificial or herbivory-induced 
defoliation (e.g. Oksbjerg 1962, Piene 1980, Långström et al. 1990). According to Piene 
and Percy (1984), increased nitrogen concentrations continued for three years in Douglas fir 
(Pseudotsuga menziesii (Mirb.) Franco) foliage recovering from serious defoliation by 
spruce budworm (Choristoneura fumiferana (Clem.)). In defoliation studies on trees, based 
on foliar analysis, the results have been very heterogeneous as regards general trends in the 
changes in mineral nutrient concentrations in the recovering canopies of the trees (Tuomi et 
al. 1988, Nuorteva 1995). On the whole, there is clearly insufficient information on this 
phenomenon and its causal effects, particularly when interpreting the results of foliar 
analyses or nutritional recovery abilities of severely defoliated Scots pine stands. As foliar 
element analysis is a widely used tool to describe, indicate and predict the growth, 
nutritional, environmental and health status (Luyssaert et al. 2002) of trees, including crown 
condition and defoliation monitoring (Lindgren et al. 2000, Merilä et al. 2007), I considered 
it important to investigate the possible interactions between rapid living crown reduction 
and the foliar element status of the trees. 

In this thesis, three different field experiments, with foliar analysis as the main study 
method, were conducted in order to asses the possible long-term effects of living crown 
reduction on the needle nutrient concentrations of Scots pine trees in southern Finland. The 
crown ratio and length of the living crown were used to estimate the amount of defoliation 
in the reduced canopies. 
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2 RESEARCH AIMS 
 
 
The overall objective of this study was to investigate the long-term consequences in the 
foliar element concentrations of Scots pine trees after living crown reduction due to disease 
or to artificial pruning. 
 
The main objectives of the present study were, in chronological order, as follows: 
 
1) The purpose of the first experiment (I) was to determine in forest conditions the long-

term effects of green crown reduction on the nutrient status of Scots pine needles a) 5-
10 years after foliage loss due to Gremmeniella abietina, and b) 1-2 years after a 
reduction of the living crown by green pruning. Pruned trees provided an alternative 
mechanical form of defoliation for comparative study with the diseased trees. In both 
cases the loss of foliage was rapidly estimated from the crown ratio. The main objective 
was to clarify whether the anomalous needle nutrient concentrations of diseased or 
pruned trees differs significantly from the foliar nutrient concentrations of the control 
trees and if so, are the possible differences large enough to be detectable by foliar 
analysis. In all the diseased and pruned stands, the dead needles and other litter/pruned 
branches had been left to decompose underneath the defoliated trees. 

 
2) The aim of the second experiment (II) was to estimate in forest conditions, the short-

term qualitative and quantitative changes in foliar nutrient concentrations in Scots pine, 
one growing season after G. abietina-induced living crown reduction. The dead needles 
were mainly still attached to dead branches in the trees. 

 
3) The main aim of the third experiment (III and IV) was a) to prove experimentally that a 

rapid and sufficiently large living crown reduction of Scots pine is the primary cause of 
increased or decreased mineral nutrient concentrations in the new needles that develop 
after severe defoliation. Additional aims were b) to study the longevity (during 3 
consecutive years after pruning) of the pruning-induced responses, c) in different sized 
trees, and d) to determine approximately the minimum reduction in the living crown, 
resulting from pruning, that would be sufficient to induce a significant increase or 
decrease in foliar mineral nutrient concentrations. All the pruned branches and needles 
were immediately removed from the study area. 
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3 MATERIAL AND METHODS 
 
 
The material for the partial studies was collected and the foliar samples analysed 
individually (15-17 elements/sample) on a total of 488 sample trees (140 diseased, 116 
pruned and 232 control trees) during the years 1987-1996 in 13 Scots pine stands as follows 
(a total of 968 foliar samples analysed): 
 
 
3.1. Experimental stands and the living crown reduction of the sample trees 
 
All the experimental stands were located in southern Finland. Six of the 8 Scots pine stands 
suffering from Gremmeniella abietina (three in I and another three in II) were growing on 
mineral soil sites, classified as Vaccinium forest site type (see Cajander 1926, 1949), and 2 
diseased stands on drained peatlands (one in I and another in II), the original site type of 
which was classified as a Cotton grass pine mire (see Heikurainen and Pakarinen 1982). 
One of the pruned stands in (I) and all the three pruned stands in (III and IV) were also 
growing on sites of the Vaccinium type. All of the 12 sites were typical, relatively infertile, 
habitats for pine. The site of only one pruning stand (I) was classified as the Myrtillus type 
(see Cajander 1926, 1949), which is slightly more fertile. 

The age of the diseased stands was 25-30 years in (I) and 13-22 years in (II), and the 
mean height 6-12 m in (I) and 3-6 m in (II). The age of the pruned stands in (I) was 15-20 
years and mean height 7-8 m. In the third experiment (III and IV), the trees were 2-8 m in 
the beginning of the study and 3-10 m three years later at the time of the last needle 
sampling. The age of the stands in III and IV was 10, 15 and 20 years. 

The material for experiment (I) was collected in winter 1986-1987 from four Scots pine 
stands, that had suffered annually from Gremmeniella abietina during the last 10 years. The 
worst epidemic, which also caused the greatest crown reduction, occurred 5 years before 
the collection of needle samples. Two healthy stands, in which part of the trees had been 
green pruned 1-2 years before, were chosen for comparison. 

The material for the second experiment (II) was collected in winter 1988-1989 from 
four Scots pine stands in which G. abietina had caused severe living crown reduction 
during the previous spring and summer (1988). Only minor visual symptoms of G. abietina 
infection were observed in the stands before the exceptionally cold and rainy summer of 
1987, when most of the trees became seriously infected. Severe needle and shoot dieback 
occurred in the diseased trees in the spring and summer of 1988. The affected trees were 
easily recognizable on the basis of their reddish-brown needles and abundant pycnidia of G. 
abietina on the dead shoots and unflushed buds. The presence of G. abietina was also 
checked by isolating the fungus from dead shoots. The majority of the needles killed by G. 
abietina during the previous summer were still attached on the branches at the time of 
needle sampling in March 1989. 

Selection of the sample trees in both (I) and (II) was based on the crown ratio, using a 
pairwise sampling method. Twenty sample trees per stand in (I) and 40 sample trees in (II) 
were selected in pairs. In the diseased (II and II) or pruned (I) sample trees, the living 
crown reduction (>=50%) was concentrated in the lower part of the crown. A healthy 
looking, phenologically similar tree growing at a distance of less than 10 m from a diseased 
or pruned tree was chosen as a control tree in order to minimize the environmental variation 
between the paired trees. The diseased trees in (I) were slightly shorter than the control 
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trees but there was no significant difference between the height of the pruned and control 
trees in (I), or the height of the diseased and control trees in (II). All tree pairs per stand 
were chosen within a 0.5-3 ha area, and the average distance between the diseased and 
control tree was, on the average, 5 m (I and II), and 3 m between the pruned and control 
tree (I). 

In the third experiment (III and IV) a total of 168 sample trees were carefully selected to 
be phenologically as similar as possible from three artificially regenerated Scots pine stands 
in southern Finland (48, 60 and 60 trees in Stands A, B and C, respectively) in winter 1992-
1993. The sample trees were growing within a 1-2 ha area in each of the stands. All the 
selected trees were completely randomized into three different pruning treatment classes 
(on average 23%, 42% or 72% of the living crown length) and two control tree classes with 
untouched green living crowns: class I, in which trees were left totally unpruned and class 
II, in which the trees were dry pruned (only the dead branch whorls were removed). Half of 
the 72 control trees were unpruned, and the other half had the dead branch whorls removed. 
Removing the dead branch whorls had no effect on any of the physiological parameters 
measured. Reduction of the living crown of the sample trees in was carried out by manually 
pruning the lowest branch whorls. The trees were pruned with a pruning saw (large 
branches) and secateurs (small branches) between 29 March and 14 May 1993, before the 
height and diameter growth of Scots pine had begun. At the beginning of the experiment 
(before pruning), there were no statistically significant differences in the phenological 
characteristics of the trees between the pruning treatment classes and the control classes. 
For a more detailed description of the experimental stands, sample trees, reduction of the 
living crown by pruning and foliar sampling, see (III). 
 
 
3.2. Foliar sampling, and chemical and data analyses 
 
For mineral nutrient and element analyses of the needles, one or two green and visibly 
healthy, southerny orientated lateral top shoots of each sample tree were collected with a 
telescopic cutter. The foliar samples were collected during the late winter dormancy of the 
trees. In (I) March 1987 (23-31.3.1987 ), in (II) 1989 (13-17.3.1989), and in (III and IV) 
1993-1996 (11-13.3.1993, 7-9.3.1994, 6-9.3.1995, 12-15.3.1996), the forest floor in the 
sampling areas was covered with snow and the monthly mean temperature was below 0°C 
(Finnish Meteorological Institute 1987-1996). Sampling for foliar analyses during the 
dormant period has for long been a common and recommended method in Finland and the 
rest of Scandinavia (Veijalainen 1977, Andersson et al. 1998, ICP Forest manual 2000). 
The foliar starch concentrations are also usually at their lowest level at this time (Adams et 
al. 1986, Fischer and Höll 1991, Anttonen and Kärenlampi 1995). The sample shoots, 
which contained only needles formed in the previous summer, were stored at -18°C prior to 
the analysis. 

In (I) and (II) the sample shoots were dried for 48 h at 60 °C. The needles were then 
removed from the shoots, homogenised with a Wiley mill to pass a 2 mm screen (I) or 
milled to pass through a 20-mesh screen (II). The needle powder was stored in sealed 
plastic bags. Dry weight determination (105 °C) and ashing (550 °C) of the samples were 
carried out in special ovens (I) or in a LECO TGA-500 analyser (II, III and IV).The total 
concentrations of 15 (I and II) or 17 elements (III and IV) were determined on the 
unwashed needles of each individual sample tree. Nitrogen (N), carbon (C) and hydrogen 
(H) were analysed on a LECO CHN-600 (Leco Corp., St. Joseph, MI) analyser (I, II, IV) 
and sulphur (S) on a LECO SC-132 analyser (I, II) or on a TJA Iris Advantage ICP-atomic 
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emission spectrometer (ICP-AES) (IV). Phosphorus (P) was determined from a 
hydrochloric acid extract of the dry-ashed samples (Halonen et al. 1983) and boron (B) 
from a nitric acid extract of the ash by ICP-AES (ARL ICP 3580) (I and II). 

In (III and IV) the frozen unwashed needles were separated from the shoots with 
tweezers, dried for 48 h at 60°C, and milled (Retsch 2M1) to pass through a screen with a 
mesh size of 0.75 mm. The B concentrations were determined spectrophotometrically 
(Shimadzu UV-240) by the azomethine H method (Halonen et al. 1983). P, K, Ca, Mg, Mn, 
Fe, Zn, Cu, Na, Al, nickel (Ni) and cadmium (Cd) were analysed following wet digestion in 
a microwave (0.5 gDW of milled needles digested in 50 ml HNO3/H2O2), on a TJA Iris 
Advantage ICP-AES. The results in (I-IV) were calculated on the basis of the dry weight 
(+105° C) of the needles. 

In (I) and (II) the significance of differences between diseased or pruned and healthy 
(control) trees in the tree pairs was tested by the Student’s t-test for paired comparisons. 
The results were calculated a) within the individual stands, and b) by combining all the 
trees in the stands by crown classes (diseased, pruned or control) within the experiments (I 
and II). Relationships between foliar element concentrations and the crown ratio were 
tested using correlation analysis (Pearson). Only significant differences (p<0.05) are 
presented in the results. All the calculations were carried out using SAS statistical software 
(SAS Institute Inc. 1992, 1995). 

In (III and IV) the mean values for the sample trees in different pruning classes and 
stands were compared using ANOVA and Tukey’s comparisons. The relationships between 
foliar concentrations of B, LCRP (= living crown reduction by pruning, % of the initial 
crown ratio) and crown ratio were tested using Pearson's linear correlation analysis (III). 
For the final statistical analyses, i.e. in (IV), the pruning Classes I (=unpruned trees) and II 
(dry-pruned trees) were combined to form one large group of control trees. This decision 
was based on the statistical analyses of all the elements, pruning classes and stands, which 
showed that pruning of the dead branch whorls did not affect the concentrations of any of 
the foliar elements analysed in this study or in (III). All of the analyses in (III) were 
performed using a Systat 6.0 for Windows software package (SPSS Inc., Chicago, U.S.A.), 
and in (IV) using SPSS 15.0 for Windows. 
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4 RESULTS 
 
 
The following is a summary of the main results in (I-IV): 
 
 
(I) Needle element status of Scots pine trees 5-10 years after severe living crown 

reduction due to Gremmeniella or 1-2 years after green pruning 
 
In the first experiment (I) the concentration of almost all the foliar elements (11 of the 15 
elements analysed) was significantly affected (p<0.05) by living crown reduction (Figures 1 
and 4). Most of the nutrient concentrations were higher in the diseased or pruned trees. This 
was evident especially when the results were calculated for all the sample trees of the 
stands by combined crown class (diseased, pruned or control). The B concentrations 
increased in the foliage of diseased or pruned trees in every single stand. Foliar B 
concentrations in the diseased trees were almost 60 % higher, and in the pruned trees more 
than 90 % higher, than in the adjacent control trees. The concentrations of foliar N, Ca, S 
were also higher, in both in the diseased and the pruned trees. In addition, foliar Mn 
increased in the diseased trees and Cu and Na in the pruned trees. In contrast, the foliar 
concentrations of Fe and Mg in the diseased trees were lower than those in the control trees, 
and C (and Mg in stand P1 on the Vaccinium site) in the pruned trees. Linear correlation 
was found between the crown ratio and the concentration of several elements (I). 
 
 
(II) Needle element status of Scots pine trees less than 1 year after needle loss 
 
In the second experiment (II), diseased trees had different foliar concentrations than the 
adjacent control trees in case of 10 elements. Foliar B concentrations were increased in 
every single stand, as were the Mg concentrations, on the contrary, decresed in every stand. 
The foliar Mn and Na concentrations were also higher than in the control trees in the 
diseased trees, as were Al in the peatland stand S4 (Figures 2 and 4). On the other hand, 
most of the other foliar nutrients (N,K, Mg, S, Fe, Cu and Zn) were lower in the diseased 
trees, when the results were calculated by combining all the sample trees of the four stands 
together by crown classes (diseased or control). 
 
 
(III) Needle boron status of Scots pine trees before and 3 consecutive years after the 

pruning treatments 
 
Before the reduction of the living crown by pruning (LCRP), there were no significant 
differences in foliar B between the pruning classes in any of the stands. One year after 
pruning, the pruned trees of Class V (LCRP 72%) in every stand and Class IV (LCRP 42%) 
in Stand C had significantly higher foliar B concentrations than the unpruned trees and dry-
pruned control trees (Classes I and II, Figure 3). The B concentrations increased after 
pruning in the smaller trees (stands A and B) and were on the average, 40-50% higher than 
in the control trees and in the larger trees (Stand C) even as much as almost 180% higher. 
Pruning of all the dead branch whorls (Class II) or from only the few lowest whorls (Class 
III), did not affect the boron nutrition of the trees. 
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The larger the LCRP and the sample trees, the greater was the increase in the foliar B 

concentrations. In the stand with the largest trees (Stand C, mean height ca. 8 m) a 
reduction of about 50% in the living crown by pruning was enough to increase the foliar B 
concentrations for at least the next three years. In the stands with smaller trees (Stands A 
and B, mean height ca. 2 and 4 m, respectively) more intense pruning was needed to induce 
significant increases in foliar B. In every experimental stand there was also a clear linear 
correlation between the crown ratio and the foliar B concentrations three years after 
pruning. 
 
 
(IV) Needle element status of Scots pine trees before and in 3 consecutive years after 

the pruning treatments 
 
At the beginning of the experiment (before pruning), there were no statistically significant 
differences between the trees in the pruning treatment classes and the control trees, and not 
in needle chemistry or in the phenological characteristics of the trees. Severe pruning of the 
living branchwhorls induced significant differences (+ or -) at the stand or pruning-class 
levels in all of the 16 foliar element concentrations analysed (Figures 3 and 4); N (+/-), P 
(+/-), K (+/-), Ca (+), Mg (-) S (+/-), Fe (-), Mn (+), Zn (+/-), Na (+), Ni (-), C (-), H (-). Al 
(+), Cu (-) and Cd (+) tended to increase or decrease. The increase or decrease was the 
strongest and the most long-lasting in those trees with a 72 % reduction of the living crown 
length; three years after pruning, the concentrations of 11 elements in the current-year 
needles were still statistically significantly (ANOVA and Tukey HSD, p<0.05) changed in 
case of 11 nutrients as compared to the foliar concentrations of the control trees. The 23% 
or 42% pruning treatments had only minor effects on a number of elements. 

In Stand A, 75% pruning induced a significant increase in the concentrations of foliar 
N1 (=1 year after), P13 (=1 and 3 years after), K1, Ca123 (=1, 2 and 3 years after), S1, Zn1, 
Mn123, Na1, Cd13, and a decrease in foliar Mg3, Fe23, Zn2, Ni3, C1 and H1. The 35% pruning 
treatment had no effect on any of the foliar elements analysed in this study. 

In Stand B, 70% pruning induced a significant increase in the concentrations of foliar 
Ca1, Mn12 , Zn1 and Na23, and a decrease in N2, P2(3), K23, S2, Fe12, Zn2 and C1. The 40% 
pruning treatment increased the foliar concentrations of Na23, while the 18% pruning 
treatment had no effect on any of the foliar elements. 

In Stand C, 72% pruning induced a significant increase in the concentrations of foliar 
P1, Ca1 and Na1, and a decrease in N23, P23, K3, S23, Fe23, Zn3, C1 and H1. The 52% pruning 
treatment decreased the concentrations of N2, S2 and C1 and the 27% pruning treatment of 
27% decreased the foliar concentrations of C1 and H2. 

When the similar pruning treatment classes of the three experimental stands were 
combined, 72% pruning (A 75%, B 70%, C72%) induced a significant increase in the 
concentrations of foliar Ca123, Mn123, Zn1, Na1 and (Cd13) and a decrease in the foliar 
concentrations of N23, P23, K23, S2, Fe23, (Cu1), Zn23, Ni1, C1 and H1 (IV: Tables 1 and 2). 
The concentrations of Cu and Cd, however, did not always exceed the Limit of Quantitation 
of the ICP-AES analyser. In general, there were some elevated Cd concentrations, but not 
sufficiently large to be of scientific importance. The 42% pruning treatment increased the 
foliar concentrations of Al1. 



 

 

16 

5
-1

0
B

5
-1

0
M

n 5
-1

0
C

a 5
-1

0
B

5
-1

0
M

n 5
-1

0
B

5
-1

0
M

n 5
-1

0
C

a 5
-1

0
B

1
-2

B
1
-2

N
a

1
-2

C
a 1
-2

B

F
e

5
-1

0
F

e
5
-1

0

M
g

5
-1

0

M
g

5
-1

0
M

g
1
-2

S
ta

n
d

 S
1

S
ta

n
d

 S
2

S
ta

n
d

 S
3

S
ta

n
d

 S
4

S
ta

n
d

 P
1

S
ta

n
d

 P
2

F
ig

u
re

 1
. 

In
c
re

a
s
e

d
 (

a
b

o
v
e

 t
h

e
 t

re
e

) 
o

r 
d

e
c
re

a
s
e

d
 (

b
e

lo
w

 t
h

e
 t

re
e

) 
fo

lia
r 

e
le

m
e

n
t 

c
o

n
c
e

n
tr

a
ti
o

n
s
 o

f 
th

e
 d

is
e

a
s
e

d
 o

r 
p

ru
n

e
d

 t
re

e
s

a
s
 c

o
m

p
a

re
d

 t
o

 t
h

e
 c

o
n

c
e

n
tr

a
ti
o

n
s
 o

f 
th

e
 a

d
ja

c
e

n
t 

h
e

a
lt
h

y
/u

n
p

ru
n

e
d

 c
o

n
tr

o
l 
tr

e
e

s
 i
n

 E
x
p

e
ri
m

e
n

t 
1

 (
I)

.
5
-1

0
 =

 f
iv

e
 t

o
 t

e
n

 y
e

a
rs

 a
ft

e
r 

th
e

 c
ro

w
n

 r
e

d
u

c
ti
o

n
 d

u
e

 t
o

 d
is

e
a

s
e

 (
G

re
m

m
e

n
ie

ll
a

 a
b

ie
ti
n

a
),

 1
-2

 =
 o

n
e

 t
o

 t
w

o
 y

e
a

rs
 a

ft
e

r 
th

e
 p

ru
n

in
g

.
O

n
ly

 s
ig

n
if
ic

a
n

t 
d

if
fe

re
n

c
e

s
 a

re
 s

h
o

w
n

 (
t-

te
s
t 

fo
r 

p
a

ir
e

d
 c

o
m

p
a

ri
s
o

n
s
, 

p
<

0
.0

5
).

024681
0

1
2

 Mean height, m

4
.5

 m
5
.2

 m
4
.3

 m
4
.5

 m
2
.9

 m
3
.3

 m

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0

n
=

1
0



 

 

17 

F
ig

u
re

 2
. 

In
c
re

a
s
e

d
 (

a
b

o
v
e

 t
h

e
 t

re
e

) 
o

r 
d

e
c
re

a
s
e

d
 (

b
e

lo
w

 t
h

e
 t

re
e

) 
fo

lia
r 

e
le

m
e

n
t 

c
o

n
c
e

n
tr

a
ti
o

n
s
 o

f 
th

e
d

is
e

a
s
e

d
 t

re
e

s
 a

s
 c

o
m

p
a

re
d

 t
o

 t
h

e
 c

o
n

c
e

n
tr

a
ti
o

n
s
 o

f 
th

e
 a

d
ja

c
e

n
t 

h
e

a
lt
h

y
 c

o
n

tr
o

l 
tr

e
e

s
 i
n

 E
x
p

e
ri
m

e
n

t 
2

 (
II

).
1
 =

 o
n

e
 y

e
a

r 
a

ft
e

r 
th

e
 c

ro
w

n
 r

e
d

u
c
ti
o

n
 d

u
e

 t
o

 d
is

e
a

s
e

 (
G

re
m

m
e

n
ie

ll
a

 a
b

ie
ti
n

a
).

O
n

ly
 s

ig
n

if
ic

a
n

t 
d

if
fe

re
n

c
e

s
 a

re
 s

h
o

w
n

 (
t-

te
s
t 

fo
r 

p
a

ir
e

d
 c

o
m

p
a

ri
s
o

n
s
, 

p
<

0
.0

5
).

S
ta

n
d

 S
1

S
ta

n
d

 S
2

S
ta

n
d

 S
3

S
ta

n
d

 S
4

1
B

1
N

a
1

M
n

1
N

a 1
B

1
M

n 1
N

a 1
B

1
A

l 1
B

Z
n

1

M
g

1

F
e

1

Z
n

1

M
g

1

Z
n

1

M
g

1

F
e

1

P
1

M
g

1

F
e

1

02468
 Mean height, m

5
.9

 m
5
.2

 m
5
.0

 m
3
.8

 m

n
=

2
0

n
=

2
0

n
=

3
0

n
=

3
0

n
=

3
0

n
=

3
0

n
=

2
0

n
=

2
0



 

 

18 

F
ig

u
re

 3
. 

In
c
re

a
s
e

d
 (

a
b

o
v
e

 t
h

e
 t

re
e

) 
o

r 
d

e
c
re

a
s
e

d
 (

b
e

lo
w

 t
h

e
 t

re
e

) 
fo

lia
r 

e
le

m
e

n
t 

c
o

n
c
e

n
tr

a
ti
o

n
s
 o

f 
th

e
 p

ru
n

e
d

 t
re

e
s

in
 d

if
fe

re
n

t 
p

ru
n

in
g

 t
re

a
tm

e
n

t 
c
la

s
s
e

s
 a

s
 c

o
m

p
a

re
d

 t
o

 t
h

e
 c

o
n

c
e

n
tr

a
ti
o

n
s
 o

f 
th

e
 c

o
n

tr
o

l 
tr

e
e

s
 i
n

 E
x
p

e
ri
m

e
n

t 
3

 (
II

I 
a

n
d

 I
V

).
1
 =

 o
n

e
 y

e
a

r 
a

ft
e

r 
th

e
 p

ru
n

in
g

, 
O

n
ly

 s
ig

n
if
ic

a
n

t 
d

if
fe

re
n

c
e

s
 a

re
 s

h
o

w
n

 (
A

N
O

V
A

 a
n

d
 T

u
k
e

y,
 p

<
0

.0
5

).
 S

e
e

 m
o

re
 d

e
ta

ils
 i
n

 t
e

x
t 

a
n

d
 (

II
I 

a
n

d
 I

V
).

1
2
 =

 o
n

e
 a

n
d

 t
w

o
 y

e
a

rs
 a

ft
e

r 
th

e
 p

ru
n

in
g

,1
2
3
 =

 o
n

e
, 

tw
o

 a
n

d
 t

h
re

e
 y

e
a

rs
 a

ft
e

r 
th

e
 p

ru
n

in
g

1
3

C
d

1
N

a 1
Z

n
1
2
3

M
n 1

S
1
2
3

C
a 1

K
1
3

P
1

N
1
2
3

B

2
3

N
a

2
3

N
a 1

Z
n

1
2

M
n 1

C
a 1
2
3

B

1
2
3

B

1
N

a
1

C
a 1

P
1
2
3

B

M
g

3

F
e

2
3

Z
n

2

N
i 3

C
1

H
1

N
2

P
2
(3

)

K
2
3

S
2

F
e

1
2

Z
n

2

C
1

C
1

H
2

N
2
3

P
2
3

K
3

S
2
3

F
e

2
3

Z
n

3

C
1

H
1

N
2

S
2

C
1

S
ta

n
d

 A
S

ta
n

d
 B

S
ta

n
d

 C
 

-0
%

-3
5
%

-7
5
%

-0
%

-0
%

-1
8
%

-4
0
%

-7
0
%

-2
7
%

-5
2
%

-5
2
%

-7
2
%

02468

1
0

 Mean height, m

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2

n
=

1
2



 

 

19 

 N
2
3

P
2
3

K
2
3

S
2

F
e

2
3

C
u

3

Z
n

2
3

N
i 2

C
1

H
1

K
2

H
1

1
N

a 1
Z

n
1

2
3

M
n 1

2
3

C
a 1
2

3
)

B
*

N
1

K
1

M
g

1

S
1

F
e

1

C
u

1

Z
n

11
N

a
1

M
n 1

B

1
-2

N
a

1
-2

1
-2

1
-2

C
a 1

-2

1
-2

BC
u

S N

1
-2

C
M

g
5
-1

0

F
e

5
-1

0

H
5
-1

0

5
-1

0
C

a 5
-1

0
B

5
-1

0
N

5
-1

0
S

5
-1

0
M

n

F
ig

u
re

 4
. 
In

c
re

a
s
e
d
 (

a
b
o
v
e
 t
h
e
 t
re

e
) 

o
r 

d
e
c
re

a
s
e
d
 (

b
e
lo

w
 t
h
e
 t
re

e
) 

fo
lia

r 
e
le

m
e
n
t 
c
o
n
c
e
n
tr

a
ti
o
n
s
 o

f 
th

e
 d

is
e
a
s
e
d
 o

r 
p
ru

n
e
d
 t
re

e
s

a
s
 c

o
m

p
a
re

d
 t
o
 t
h
e
 h

e
a
lt
h
y
/u

n
p
ru

n
e
d
 c

o
n
tr

o
l 
tr

e
e
s
.T

h
e
 r

e
s
u
lt
s
 a

re
 c

a
lc

u
la

te
d
 f
o
r 

d
if
fe

re
n
t 
c
ro

w
n
 r

e
d
u
c
ti
o
n
 c

la
s
s
e
s

(d
is

e
a
s
e
d
 a

n
d
 p

ru
n
e
d
) 

w
it
h
in

 e
a
c
h
 e

x
p
e
ri
m

e
n
t 
(1

, 
2
 a

n
d
 3

) 
b
y
 p

o
o
lin

g
 t
h
e
 d

a
ta

 o
f 
in

d
iv

id
u
a
l 
s
ta

n
d
s
 i
n
 t
h
e
 g

iv
e
n
 e

x
p
e
ri
m

e
n
t.

S
ta

n
d
 s

p
e
c
if
ic

 d
a
ta

 a
re

 p
re

s
e
n
te

d
 i
n
 F

ig
s
. 
1
-3

. 
L
C

R
P

=
liv

in
g
 c

ro
w

n
 r

e
d
u
c
ti
o
n
 b

y
 p

ru
n
in

g
, 
%

 o
f 
th

e
 i
n
it
ia

l 
c
ro

w
n
 r

a
ti
o
.

*)
 =

 b
o
ro

n
 c

o
n
c
e
n
tr

a
ti
o
n
s
 f
ro

m
 (

II
I)

 r
e
c
a
lc

u
la

te
d
 f
ro

m
 t
h
e
 o

ri
g
in

a
l 
d
a
ta

 b
y
 c

o
m

b
in

e
d
 p

ru
n
in

g
 t
re

a
tm

e
n
t 
c
la

s
s
e
s

E
x
p
e
ri
m

e
n
t 
1
 (

I)
S

ta
n
d
s
 S

1
-S

4
E

x
p
e
ri
m

e
n
t 
1
 (

I)
S

ta
n
d
s
 P

1
-P

2
E

x
p
e
ri
m

e
n
t 
2
 (

II
)

S
ta

n
d
s
 S

1
-S

4
E

x
p
e
ri
m

e
n
t 
3
 (

II
I 
a
n
d
 I
V

)
S

ta
n
d
s
 A

, 
B

 a
n
d
 C

L
C

R
P

 0
%

 (
A

,B
 a

n
d
 C

)
L
C

R
P

 2
3
%

 (
B

 1
8
%

, 
C

 2
7
%

)
L
C

R
P

 4
2
%

 (
A

 3
5
%

, 
B

 4
0
%

, 
C

 5
2
%

)
L
C

R
P

 7
2
%

 (
A

 7
5
%

, 
B

 7
0
%

, 
C

 7
2
%

)

-0
%

-2
3
%

-4
2
%

-7
2
%

1
A

l 1
2

3
)

B
*

n
=

4
0

n
=

4
0

n
=

2
0

n
=

2
0

n
=

1
0

0
n

=
1

0
0

n
=

7
2

n
=

2
4

n
=

3
6

n
=

3
6

4
.6

 m
3

.1
 m

5
.0

 m
02468

1
0

1
2

Mean height, m



 

 

20 

5 DISCUSSION 
 
 
All the three experiments of this thesis provided significant evidence that severe disease-
induced defoliation or artificial pruning of the living branches can induce long-lasting 
nutritional changes in the foliage of the recovering trees under the typical growing 
conditions for Scots pine.The foliar concentrations of all the 17 mineral nutrients/elements 
analysed were affected, to a varying degree, by artificial pruning during the following three 
years (III and IV). In the case of relatively small trees (height 2-3 m), most (10) of the 
nutrient/element concentrations appeared to increase rapidly in the first year after pruning, 
while only the C and H concentrations were at a lower level. During the second and third 
year after pruning, the Mg, Fe, Ni and Zn concentrations dropped, and only B, Ca, Mn and 
P had remained at an elevated level by the end of the study. A similar phenomenon, but at a 
different scale, apparently occurred in the larger pruned trees (height 4-8 m); after one year 
7 different elements increased, while only Fe, C and H decreased. In the second and third 
year, only foliar B, Ca and Mn increased, and six N, S, P, K, Fe and Zn decreased. It was 
interesting to see that the foliar C concentration returned almost back its original level 
during the second and third year, despite the decreased concentrations of photosynthetically 
important nutrients like N and S. 

In the pine stands in which Gremmeniella abietina caused a reduction in the living 
crown, 7 (N, S, K, Mg, Fe, Cu and Zn) nutrients decreased and 3 elements increased (B, 
Mn and Na) within one year (II). In the stands with symptoms of long-term severe infection 
(5-10 years) (I), the concentrations of only Mg and Fe decreased but that of and B, N, S, Ca 
and Mg increased. It is interesting to see that N and S remained at a higher level for so 
many years after living crown reduction. One possible explanation for this is the partial 
decomposition and N mineralization of the increased litterfall of dead needles from the the 
trees with severe living crown reduction over the years. 

Coniferous trees store a significant amount of their nutrients in the foliage, and they 
retranslocate part of the nutrients from older needles to the new growing shoots depending 
on the nutrient status and demand of the tree (Fife and Nambiar 1982, Lim and Cousens 
1986, Nambiar and Fife 1991, Helmisaari 1992, Finer 1989, Salif and Timmer 2001). 
Defoliation disturbs/inhibits this internal cycle but, normally, part of the nutrients gradually 
return from the soil to the nutrient pool in the tree through leaching and decomposition of 
the litterfall. In (I), the dead needles and other litter/pruned branches had become partly 
decomposed underneath the defoliated trees. This was not the case in the third experiment 
(III and IV), where all the pruned branches and needles were immediately transported away 
from the study area. In the second experiment (II), retranslocation was also probably 
disturbed, because Gremmeniella abietina primarily kills the phloem of the branches during 
the dormant period, before needle death in the spring. The inhibited or disturbed internal 
cycle of nutrients between the defoliated foliage in (II, III and IV) may partly explain some 
of the different changes in e.g. nitrogen and sulphur concentrations, compared to the results 
obtained in the first experiment (I). 

The paired-tree comparison method used in (I)and (II) was successful in eliminating 
several disturbing factors affecting the tree nutrient status in the ex-post investigations, 
where the adjacent control trees represented the ex-ante situation. However, the differences 
in genetic properties of the trees and the species composition and diversity of the 
ectomycorrhizal associations may affect the foliar nutrition (Knight 1978, Schmidtling 
1995, Baxter and Dighton 2001, Xu et al. 2003, Kennedy et al. 2007, Korkama-Rajala et al. 
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2008). The selection mechanisms employed by Gremmeniella abietina in achieving 
successful infection of the trees are also variable, and the original foliar nutrient status of 
the unaffected control trees may have also been partly altered, especially in (I), over the 
years. On the whole, despite the somewhat heterogeneous foliar element reactions of the 
trees in this thesis, many of the consequences of the changes in foliar chemistry were 
relatively similar (e.g. B, Mn and Ca), irrespective the form (disease- or pruning-induced) 
of living crown reduction of the Scots pine trees. 

In other studies on the defoliation of conifers, the foliar N concentration for instance has 
increased (Piene 1980, Piene and Percy 1984, Ericsson et al. 1985, Långström et al. 1990, 
McMillin and Wagner 1997), decreased (Wagner 1986,1988, Raffa et al. 1998, Roitto et al. 
2003, Handa et al. 2005, Asshoff & Hättenschwiler 2006), first increased and then 
decreased (Oksbjerg 1962, Piene 1980) or remained unchanged (Lyytikäinen 1993a, Reich 
et al. 1993). There are many possible reasons for the discrepancies between these studies. 
Physiological differences between tree species, different defoliation mechanisms and 
degree of needle loss, or the time difference between defoliation and the sampling of the 
regrown needles, for instance, provide possible explanations. On the other hand, even in the 
present study which employed the same species and approximately the same intensity of 
defoliation, the results were frequently relatively different in the case of trees of different 
age, and in how many years the trees took to recover after the treatment (see e.g. Figure 3). 

The analysed and predicted physiological reactions of the trees and higher plants to 
minimize the effects of reduced foliage have been explained in several studies on the basis 
of e.g. compensatory growth, increased rate of photosynthesis in the remaining and 
refoliated foliage and increased mobilization of carbon reserves, including the carbon based 
defense mechanisms against the consequences of damage (see e.g. Bryant et al. 1983, Piene 
and Percy 1984, Tuomi et al. 1984, Wilson 1992, Honkanen et al. 1999, Mutikainen et al. 
2000, Stamp 2003, Rooke and Bergström 2007). Trees may produce new foliage or leaves 
relatively quickly, and have compensatory growth, increased size of their leaves, produce 
secondary buds etc. (Piene 1980, Piene and Percy 1984, Søgaard et al 2007). Most of these 
theories and studies, however, take account of the nutrient status only at a general level, and 
primarily concentrate on the relationship between nitrogen and carbon. 

One possible explanation for the increased mineral nutrient concentrations in the 
remaining and new foliage within one year after pruning is the altered root/shoot(crown) 
ratio, and a consequence of the temporary "overcapacity" of the roots after rapid and severe 
loss of foliage. In a pruning study on Norway spruce (Picea abies Karst.), the increased 
nutrient concentrations lasted for only a few months after crown reduction (Oksbjerg 1962). 
I assume, based on the results in (III and IV), that during the following years at the latest, 
after the root system has utilised the possible nutrient reserves, the uptake of mineral 
nutrients will probably decline as a result of decreased carbohydrate flow from the reduced 
canopy to the roots. In several studies, the root system has usually been depressed after 
defoliation. However, in a defoliation study on Scots pine trees (Kuikka et al. 2003), the 
fungal biomass in the roots and the mycorrhizal colonization percentage remained 
unchanged, even though the number of sporocarps was more than three times higher near 
the undefoliated control trees than the defoliated trees one year later There are also some 
indications of altered water uptake of the roots after a reduction in the canopy (Jackson et 
al. 2000, Snyder and Williams 2003). 

Changes in the community, structure and biological activity of the mycorrhizal 
associations and thereby in active nutrient uptake, are also highly likely due to the smaller 
amount of photosynthates provided by a reduced crown. Kuikka et al. (2003) suggested that 
Scots pine continues to invest in the maintenance of the symbiosis despite the reduced 



 

 

22 

photosynthetic capacity resulting from defoliation. More recently, Saravesi et al. (2008) 
demonstrated that different timing of foliar defoliation induced different responses in the 
ectomycorrhizal fungal symbionts. Apparently, after severe defoliation, the amount of low-
biomass ectomycorrhizae, which are assumed to require less carbon from the host tree, 
increased (Saravesi et al. 2008). Owing to the complex interactions between the 
photosynthetically active canopy and the root system processes in the soil, recent studies 
using natural abundances of nitrogen and carbon isotopes �15N and �13C (Hobbie et al. 
1999, 2000, 2001) might give some new insights into the interactions between the foliage 
and mycorrhizal fungi. However, based on the above-mentioned studies and the widely 
held conviction about the important role of the mycorrhizas in the nutrient and water uptake 
of trees, I assume, that the active and energy-dependent nutrient uptake by fine roots and 
their mycorrhizal hyphae had, in the long-term, probably either decreased or changed in the 
pruned trees of this study and that the passive uptake of nutrients had relatively increased to 
some extent. 

The nutritient status of trees has a considerable impact on the recovery processes after 
defoliation. If the trees are growing in poor nutritional conditions, their ability to recover 
decreases drastically. On the other hand, in the case of a good nutrition status, 
compensatory growth after defoliation has even increased the growth rate of the trees 
(Huttunen et al. 2007). Overcompensation after defoliation is a common phenomenon in 
many higher plants, especially in nutrient-rich, favourable growing conditions (e.g. 
Vanderklein and Reich 1999, Rautio et al. 2005, Ruiz et al. 2008). In the studies of this 
thesis, the increases in the concentrations of many of the nutrients may have had a 
temporarily beneficial growth effect in tree recovery. On the other hand, the decrease in the 
other nutrients is not likely to be a permanent process. It is possible that, after five or more 
years, the N and S concentrations in the defoliated trees for instance may return to normal 
or increase to slightly higher levels, partly as a result of decomposition and nutrient release 
from the defoliated needle litter. However, there are indications that, in some cases, those 
nutrients which increased in the present study after the pruning treatments, especially B, Ca 
and Mn may have growth-improving effects under certain conditions (e.g. Bergmann 1993, 
Marschner 1998, Saarsalmi and Tamminen 2005). 

There might be connections between the tree nutrient/element status, defoliation-
induced susceptibility and the resistance chemistry of trees, e.g. in the synthesis of carbon-
based defence mechanisms against herbivores (Bryant et al. 1983, Wagner and Evans 1985, 
Lyytikäinen 1993a, 1994, Krause and Raffa 1995, 1996, McMillin and Wagner 1997, Raffa 
et al. 1998, Chen et al. 2002, Clancy et al. 2004, Cornelissen and Stiling 2006, Huttunen et 
al. 2008). Previously, Scots pine as an evergreen conifer is considered to have low induced 
chemical responses to defoliation (e.g. Niemelä et al. 1984, Tuomi et al. 1988, Lyytikäinen 
1993b). Plant defence and growth hypotheses, however, are developing continuously 
(Honkanen 1995, Hamilton et al. 2001, Koricheva 2002, Stamp 2003). It is too speculative, 
on the basis of the results of this thesis, to draw direct conclusions about the relationship 
between the altered foliar element concentrations and the resistance against fungal diseases 
or herbivores. However, after severe pruning in the third experiment (III and IV), part of 
the heavily pruned trees were killed in subsequent years by moose (Alces alces) (a total of 7 
trees in stands A and B) and by pine shoot beetle (Tomicus piniperda) (a total of 6 trees in 
stand C). Especially in case of T. piniperda, previous defoliation or severe pruning have 
increased the risk to beetle attacks of the pines (Långström et al. 1992, 2001, Cedervind 
2003, Cedervind et al. 2003) . Apart from these cases of damage, all of the other pruned 
sample trees remained alive with only a slight growth reduction (see III for details). Nearly 
15 years later, most of the pruned sample trees appear to be still alive and in a relatively 
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good condition (visual inspection of the experimental stands in the autumn of 2007, 
H. Nuorteva). 
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6 CONCLUSIONS 
 
 
Based on the results of the studies (I-IV) the following conclusions can be drawn as a reply 
to the study aims, listed in chapter 2: 
 
1)  The foliar nutrient concentrations of both diseased and pruned trees differed 

significantly from the foliar nutrient concentrations of the adjacent control trees. Foliar 
B, N, S, Ca were significantly higher in both the diseased and pruned trees, while Mn 
was higher only in the diseased trees and Cu and Na only in the pruned trees. Foliar Mg 
and Fe concentrations were lower in the diseased trees than in the control trees. Most of 
the differences were at such a high level, that the large disparity should be noted in the 
interpretation of foliar analysis in recently defoliated conifers before any long-range 
conclusions. 

 
2)  One growing season after the Gremmeniella abietina-induced living crown reduction, 

the diseased trees had significantly higher foliar B, Mn and Na concentrations and lower 
Mg, Fe, Zn, Cu, K, N and S concentrations compared to the healthy trees. Because the 
reddish-brown dead needles were still attached on the dead branches in the trees, the 
results indicated that the foliar concentrations may change rapidly even without 
mineralization of the needle litter, and possible in conditions with minimal or any 
retranslocation from the dying needles (the phloem in the branches is killed by the 
fungus before the needle death). 

 
3)  The third study proved experimentally that a rapid and sufficiently large living crown 

reduction of Scots pine is the primary cause for the increased or decreased foliar 
element concentrations in the new needles that develop after severe defoliation. 
Especially after a rapid 72 % reduction in the live crown length, element concentrations 
in the current year/youngest needles of recovering Scots pine crown are significantly 
altered within one year. The concentrations of foliar B, and often also Mn and Ca 
probably increase for at least three or more years after defoliation. Several nutrients may 
become concentrated in the growing new needles during the first year, especially in 
trees smaller than 3 m, but during the second and third year the concentrations of e.g. N, 
S, Mg, Fe, Zn, P and K usually decrease. 

 
This study proved experimentally in natural forest conditions that severe defoliation of 
Scots pine trees may induce biologically significant changes in the important macro- and 
micronutrients concentrations, as well as in the C concentrations, of refoliated needles. 

In the field of biomonitoring, foliar analysis has been recently employed in several 
studies on forest and environmental health conditions. However, one should be carefull 
when comparing foliar nutrient results from injured and healthy conifers in order to explain 
the condition and vitality of trees. Most researchers take this into account, but it is also 
possible to use foliar analysis purpose oriented e.g. as an indicator of nitrogen and sulphur 
deposition, without taking into account the health of the trees. Especially during the heated 
public discussions in Scandinavia in the middle of the 80's about forest decline and 
Gremmeniella abietina, some researchers were tempted to overprove on the basis of foliar 
analysis the effects of environmental disturbances on forest health. Unfortunately, 
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exceptionally high or low needle nutrient concentrations are still occasionally interpreted as 
one of the explanations for tree injury, and not conversely, as a consequence. 

Foliar analysis based methods are nowadays developing rapidly as a result of an 
increased ecological modelling capacity and new ideas. Considerable effort has been put in 
finding better solutions that would increase the diagnostic value of the foliar analysis of the 
trees (e.g. Braekke et al. 1998, Helmisaari 1998, Rautio 2000, Brockley 2001, Luyssaert et 
al. 2002). Scientific value and objective interpretation are important key questions in 
maintaining and improving the usability of foliar analysis in different fields of 
environmental monitoring. Concerning the studies in this thesis, I find them significant in 
providing new information about the long-term effects of rapid living crown reduction on 
the foliar nutrient and element status of Scots pine trees.  
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