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ABSTRACT 
 
 
Forest canopy cover (CC) is an important ecological variable and the basis for the 
international definition of forest. Canopy cover is defined as the proportion of forest floor 
covered by the vertical projection of the tree crowns. Thus, an unbiased estimation of CC 
requires that the area of interest is covered by vertical measurements, typically by using 
upward-looking sighting tubes. However, these measurements are very laborious. In 
practical forest inventories the estimate should be obtained as quickly as possible, but large 
errors should still be avoided. The aim of this thesis was to compare different quicker-to-
apply CC estimation techniques to more accurate sighting tube estimates. One alternative is 
to use instruments with an angle of view (AOV), such as cameras or spherical 
densiometers, instead of the sighting tubes. This may, however, lead to biased results when 
using large AOVs, because the sides of the crowns are also observed. The results showed 
that moderate (max. 40°) AOVs can be used to decrease the number of required sample 
points without causing a large bias, but more than 20 measurements per plot should be 
made to avoid large errors in all forests. A new instrument, the crown relascope, is 
potentially a good alternative in low cover forests where the trees are not very tall. Ocular 
estimates were found to depend on the observer, but considerable underestimation of CC 
was common. Furthermore, models for predicting CC based on commonly available forest 
metrics such as tree height and basal area were created, and reached a precision similar to 
the quicker field methods. Finally, airborne laser scanning data can be used to estimate CC 
from the proportion of pulses that hit the canopy above a predefined height limit. The laser 
method was found to have a high precision but resulted in a small overestimation of CC.  
 
Keywords: Canopy cover; canopy closure; Cajanus tube; beta regression; image 
processing; LiDAR 
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ERRATA 
 
 
Study I 
 
In the decimation of the Cajanus tube dot count data down to 49 and 23 points per plot, the 
results were incorrect for five plots (18, 22, 24, 40, and 56). Thus, the outliers at Caj. 49 
and Caj. 23 columns in Figure 3 disappear. The correct rows two and three in Table 2 are: 
 
 

Method N Mean Median Std. dev. Quartile range Min Max 

Cajanus tube 49 points 19 0.002 0.011 0.048 0.061 -0.085 0.084 

Cajanus tube 23 points 19 -0.016 -0.023 0.074 0.105 -0.160 0.145 
 
 
The corrections led to lower standard deviations and smaller underestimations in these 
cases. The correct results of the Kruskall-Wallis test still indicate that the H0 of equal 
medians was rejected (χ2 = 59.2, d.f. = 13, P < 0.01). The correct table of multiple 
comparisons is given below. The conclusions did not change significantly.  

 
 

Method N Mean rank Difference 
from control 

Standard 
error 

Test 
coefficient 

Cajanus 195 points (control) 19 149.0 0.0 12.15 0.00 

Cajanus 102 points 19 160.3 11.3 12.15 0.93 

Cajanus 49 points 19 154.8 5.8 12.15 0.48 

Cajanus 23 points 19 133.7 -15.3 12.15 -1.26 

LIS 19 144.8 -4.2 12.15 -0.34 

Densiometer 49 points 19 162.9 13.9 12.15 1.14 

Densiometer 23 points 19 156.0 7.0 12.15 0.58 

Densiometer 9 points 19 137.3 -11.7 12.15 -0.96 
Densiometer 10 points subjective 
sample 19 103.1 -45.9 12.15 -3.78a 

Digital photographs 18 63.8 -85.2 12.31 -6.92a 

Black-painted digital photographs 18 156.5 7.5 12.31 0.61 

A's ocular estimate 14 154.4 5.4 13.04 0.41 

B's ocular estimate 19 98.8 -50.2 12.15 -4.13a 

C's ocular estimate 19 48.8 -100.2 12.15 -8.24a 
aStatistically significant difference at α=0.05 (critical value 2.891).   

 
 
The horizontal and vertical angles of view of the camera were 63° and 49°, respectively. 
 
Johansson’s paper should be cited with the year 1985, not 1984.  
 
Reference: Zar, J. H. 1984. Biostatistical analysis. 2nd ed. Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, is missing from the list of references. 
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Study IV  
 
Equation 5 should be written as follows:  
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1 INTRODUCTION 
 
 
1.1 Background 
 
The usual aim of forest inventories is to provide information on the timber volume and the 
need for management in the area of interest. In addition to the economic requirements, 
modern forest inventories must also produce data concerning ecological and social aspects 
of forestry. From the ecological perspective, the canopy can be considered to be the most 
important part of a forest ecosystem. For instance, Ozanne et al. (2003, p. 183) stated that 
“the forest canopy is the functional interface between 90% of Earth's terrestrial biomass and 
the atmosphere” and, in addition, that it “plays a crucial role in the maintenance of 
biodiversity”. Because of this, the parameters that can be used to describe canopy structure 
and functioning need to be estimated. Canopy cover (CC) is one example of a commonly 
used indicator of canopy structure. 

Canopy cover is traditionally defined as the proportion of ground covered by the 
vertical projection of the tree crowns (Jennings et al. 1999). Numerous studies stated the 
usefulness of canopy cover as an indicator of plant and animal habitats (e.g. Anderson et al. 
1969, James 1971, Werner and Glennemeier 1999, Ranius and Jansson 2000). In forest 
management, CC can be used as a measure of stand density (Zeide 2005) and thus it can be 
utilized in silvicultural decision making (Johansson 1985, Buckley et al. 1999). Forest fire 
severity can be quantified as a change in CC (Miller et al. 2009). Ancillary canopy cover 
data is also useful in the development of different remote sensing methods, as it describes 
which proportion of the signal originates from the canopy (Jasinski 1990, Spanner et al. 
1990, Rautiainen et al. 2003, Stenberg et al. 2008). Similarly, CC influences the Earth’s 
surface albedo, and thus the climate both locally and globally (Betts and Ball 1997, Lohila 
et al. 2010). 

Finally, the main reason for the inclusion of canopy cover in most national forest 
inventories (NFIs) is the fact that the international definition of forest is based on canopy 
cover. The FAO (2004, p. 17) defines forest as  
 
“Land spanning more than 0.5 hectares with trees higher than 5 meters and a canopy cover 
of more than 10 percent, or trees able to reach these thresholds in situ. It does not include 
land that is predominantly under agricultural or urban land use.” 
 

Consequently, CC measurements and models are needed to calculate national forest 
areas for international forest statistics. Forest area monitoring has become especially 
important in developing countries after the initiation of the REDD (Reducing Emissions 
from Deforestation and Forest Degradation in Developing Countries) mechanism (GOFC-
GOLD 2009). Deforestation and forest degradation cause greenhouse gas emissions, and 
therefore the REDD mechanism was introduced as a means to provide financial 
compensation for the countries that preserve their forests. Changes in CC may also indicate 
forest degradation, for example illegal loggings (GOFC-GOLD 2009). Intergovernmental 
Panel on Climate Change has defined three different tier levels that describe the precision 
of the forest information (IPCC 2006). High tier level means more reliable forest data and 
warrants higher compensation, if the forest area remains larger than a predefined baseline 
suggests. Thus the quality of CC data obtained from field measurements and remote 
sensing has become extremely important. 
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1.2 Concepts related to canopy cover measures 
 
The terminology that has been used to describe different forest cover metrics and 
measurements in the literature has been very vague (Jennings et al. 1999, Wilson 2011). 
There are many concepts that appear to be synonymous to concept canopy cover: canopy 
closure, crown cover, crown closure, fractional cover, and canopy density, amongst others. 
In addition, antonyms such as canopy gap fraction and canopy openness are commonly 
used. The problem is that different mensuration techniques produce different cover 
estimates. For example, instruments that observe a large area of the canopy from each 
point, such as cameras equipped with fisheye lenses, produce larger cover estimates than 
sighting tubes that measure the canopy in a vertical direction (Bunnell and Vales 1990, 
Cook et al. 1995).  

Because of the different results, Nuttle (1997) recommended that the separate concepts 
of “angular canopy cover” and “vertical canopy cover” should be used for different types of 
measurements. After a comprehensive literature review, Jennings et al. (1999) stated that 
the concepts “canopy cover” and “canopy closure” should have different meanings. They 
defined canopy cover as “the proportion of the forest floor covered by the vertical 
projection of the tree crowns”, i.e. canopy cover should be measured in a vertical direction. 
On the other hand, they defined canopy closure as “the proportion of sky hemisphere 
obscured by vegetation when viewed from a single point”. This means that if a larger area 
of the canopy is observed with an instrument (i.e. it has angular field of view), the result 
should be called canopy closure. The canopy closure is usually larger for the same stands 
than canopy cover: the larger the angle of view (AOV) of the observation, the larger the 
proportion of crowns that are viewed from the side (Fig. 1).  
 
 

 
 
Figure 1. The difference between canopy cover (left) and canopy closure (right) is that 
canopy cover is measured in vertical direction and is defined for a specified area. Canopy 
closure is measured in perspective projection and is unique to the measured point and view 
angle. Image reprinted from Silva Fennica. 
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This division has slowly gained acceptance in the scientific community (Smith et al. 
2008, Paletto and Tosi 2009), but it is not yet well known to everyone. In addition, the 
IPCC (2003) and the FAO (2004) state that the concepts canopy cover, crown cover, and 
crown closure are synonymous. Still, it would be clearer if the word “closure” was not used 
when referring to vertical measurements. The antonyms canopy openness and gap fraction 
usually include all gaps within the AOV and are thus related to canopy closure. 

Common definitions of forestry concepts are particularly important for NFIs, and 
therefore the harmonization of concepts has been initialized. As a result, Gschwantner et al. 
(2009, p. 315) defined crown cover (i.e. canopy cover) through crown projection areas: 
 

 “The crown consists of the living branches and their foliage.” 
 “The crown projection area of a tree is the area of the vertical projection of the 

outermost perimeter of the crown on the horizontal plane.” 
 “The aggregation of the crown projection areas of individual trees (without 

double-counting of overlapping crown projection areas) divided by the stand area 
yields the crown cover at the stand level.” 

 
The part “vertical projection of the outermost perimeter of the crown” in this definition 
makes several additions to the definition by Jennings et al. (1999). First, small gaps inside 
the crown perimeter should be classified as canopy. Secondly, dead trees and branches 
should be excluded. Third, if this definition is interpreted strictly, even small seedlings have 
crowns and should therefore be included in the CC. The first addition is important in 
practice, because small gaps inside the crown perimeter (Fig. 2) are usually visible in 
canopy photographs, and therefore must be removed from the images before CC estimation. 
Conversely, canopy closure, as defined by Jennings et al. (1999), has no such restrictions, 
i.e. canopy closure takes into account the crown transparency. The concept of “canopy 
cover” (CC) that is used in this thesis is, in general, equivalent to these definitions. 
 
 

 
Figure 2. The outer perimeter of the crown drawn on a pine tree photographed from a 
helicopter. The delineation of the perimeter depends on the resolution in which the crown is 
observed; in the field, details smaller than 10 cm are usually ignored. The crown area 
determined this way is nearly always smaller than the convex hull of the crown. 
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1.3 Canopy cover estimation 
 
1.3.1. Field measurements with sighting tubes 
 
Due to the unclear definitions, there has been much uncertainty over how canopy cover 
field measurements should be made. If the definition by Gschwantner et al. (2010) is 
interpreted strictly, only vertical measurements should be accepted to obtain unbiased CC 
estimates. These measurements are typically made with vertically balanced sighting tubes 
(Sarvas 1953, Johansson 1985, Jennings et al. 1999) that do not observe the sides of the 
crowns. It is also easy to only record the between-crown gaps.  

The Finnish version of the sighting tube is the Cajanus tube, which was named after its 
inventor, Werner Cajanus. Cajanus was the first professor of forest inventory at the 
University of Helsinki, and designed the tube in 1910’s, originally for measuring crown 
width (Sarvas 1953, Rautiainen et al. 2005). It is a simple cylinder equipped with a mirror 
that allows the user to look upwards through the tube (Fig. 3). At the top of the tube is a 
crosshair that helps the measurement taker to determine whether the point is covered or not. 
The tube is attached to a holder and a support staff with a self-balancing system that makes 
vertical observations easy. Different versions of the same idea have been presented by 
several authors (Walters and Soos 1962, Bonnor 1967, Jackson and Petty 1973, Stumpf 
1993). 
 
 

 
 
Figure 3. Cajanus tube (photo by Pekka Voipio). 
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Sighting tubes can be used to measure CC in three different ways. In the dot count 
method (Sarvas 1953, Johansson 1985, Rautiainen et al. 2005), the area of interest is 
sampled with the tube. If a point is covered it is given a value of one, otherwise it is zero. 
The final CC is calculated as the average of the individual points. The sampling points can 
be located randomly, but usually a systematic sampling grid is used to guarantee coverage 
of the entire area of interest. This type of measurement is equal to sampling from a 
Bernoulli distribution, and the variance of this unbiased estimator is given by (CC(1–
CC)/n), where n is the number of measurements. This formula can be used to estimate the 
number of sample points required for a certain level of precision, provided that the 
observations are uncorrelated; in case of systematic grid designs, the variance estimates 
may be biased because of the spatial autocorrelation between the nearby points. Based on 
theory and practical experience, sample sizes of 200–250 points are recommended in the 
literature (Sarvas 1953, Johansson 1985, Jennings et al. 1999, Rautiainen et al. 2005). 

Line intersect sampling (LIS) resembles dot count sampling with predefined transects. 
The sighting tube and a tape measure are used to record where the canopy starts and ends 
above the transect, and CC is calculated as the ratio between the length of the covered 
transects and the full length of all transects (O’Brien 1989, Jennings et al. 1999, Williams et 
al. 2003). Gregoire and Valentine (2007) provided a detailed description of the error 
estimation and statistical background of this method. 

If the tree locations at the plot are known, sighting tubes can be used to measure crown 
radii. With this information, an approximate map of the canopy can be drawn and CC can 
be estimated from the map (Lang and Kurvits 2007). Measuring more than one radius is 
preferable, as crowns are not typically circular. Lang and Kurvits (2007) noted that this 
could lead to a considerable underestimation of CC. Even with several radii, the crowns are 
still assumed to be convex, which is not usually true. The degree of crown overlap can also 
be estimated visually (Ko et al. 2009). If measured radiuses are not available, they can be 
modelled based on the stem diameter (see 1.3.3.). 
 
1.3.2 Other field measurement techniques 
 
There are also plenty of other methods that have been used in canopy cover estimation, but 
the sighting tubes are the most compatible with the current definition of CC as they 
measure the true vertical projection of the canopy. Many widely used techniques, such as 
canopy photography, observe the canopy using a non-zero angle of view, and are therefore 
better suited to measuring canopy closure. Measurements made with an AOV integrate 
information from different heights, and are therefore unique to the specific three-
dimensional location and the AOV used. Mapping the vertical projection of the canopy this 
way would require that crowns were a flat 2D surface at a constant height, which is not a 
realistic assumption.  

The advantage of AOV measurements is that the larger the area observed, the smaller 
the variance between individual observations at a plot. As the sample size required for a 
certain level of precision depends on the sample variance, AOV instruments can be used to 
decrease the number of sample points required compared to vertical observations. As 
covering an area with vertical measurements is time consuming, AOV instruments can be 
used to save time in CC estimation, provided that the AOV remains relatively small, 
within-crown gaps are correctly assessed, and the small bias in the estimate is accepted. 
Earlier results indicated that AOVs close to 60° (30° from zenith) produce a significant bias 
(Bunnell and Vales 1990, Ganey and Block 1994, Cook et al. 1995). 
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Traditional instruments for AOV measurements include the moosehorn (Robinson 
1947, Garrison 1949) and the spherical densiometer (Lemmon 1956). The moosehorn 
resembles the Cajanus tube, but its shape is a pyramid or a narrow box and there is a grid of 
dots at the top. Canopy cover is estimated as the proportion of covered dots. The spherical 
densiometer (Fig. 4) is a small wooden box embedded with a convex or concave mirror. 
The mirror is engraved with a graticule, and the user can calculate the proportion of 
covered squares while looking at the reflected image of the canopy.  

Another classic AOV method is the use of canopy photographs (Anderson 1964, 
Jennings et al. 1999, Jonckheere et al. 2005, Pekin and Macfarlane 2009). Hemispherical 
images are best suited for canopy closure or gap fraction estimations as the AOV is large 
and the resolution is also usually good enough to observe the small within-crown gaps. It is 
also possible to analyze just the central part of the image to reduce the AOV. If a full 
hemispherical view is not required, digital point-and-shoot cameras are nowadays 
inexpensive and easy to use for canopy photography. 

Taking the photographs in the forest is quick, but getting the CC from the images 
requires post-processing. Typically, the images are first thresholded to separate canopy 
pixels from the background sky. The blue image channel is commonly used for 
thresholding because of the good contrast and low scattering and noise levels (Jonckheere 
et al. 2005, Nobis and Hunziker 2005, Cescatti 2007). The threshold can be set manually 
(Frazer at al. 1999) or automatically by a thresholding algorithm (Jonckheere et al. 2005, 
Nobis and Hunziker 2005). If CC is required, small within-crown gaps must be painted 
over, which can be done manually or by eliminating the gaps that are too small (Pekin and 
Macfarlane 2009). Finally, CC can be estimated by calculating the proportion of the canopy 
(black) pixels. 

 

 
 
Figure 4. The spherical densiometer.  
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Angle count or relascope sampling (Bitterlich 1948, 1984) is commonly used in forestry 
for measuring the basal area of the stems in a stand, but it can also be used to measure the 
area of the crowns, and thus also CC (Bitterlich 1961, 1984). Briefly, the idea of the 
relascope or angle count sampling is that the basal area of the stand can be estimated by 
tallying the number (n) of tree stems that appear wider than the relascope's slot. The 
relascope function, G = n × BAF, is then used to convert this number into the basal area per 
hectare (G). The relascope's basal area factor (BAF) (m2 / ha) indicates how large is the 
increment in the basal area that each included tree represents. In Finland, the most 
commonly used basal area factors are one and two. Bitterlich (1961, 1984) noted that if the 
BAF is very large and the tree crowns are visually projected down to eye level, the crowns 
can be tallied similarly to the stems. For instance, if the BAF of a relascope is 200, then 
each crown that appears wider than the relascope’s slot represents 200 m2/ha, i.e. 2% of the 
hectare. Assuming that the crowns are circular in cross-section and do not overlap, each 
tallied crown thus adds 2% to the estimated CC. This method is especially suitable for open 
stands with low crowns (Bitterlich 1984). 

If there are no specific instruments available or there is not enough time for actual CC 
measurements, ocular estimation is a commonly used option. The observer simply looks 
around at the plot and then gives her/his best guess of the CC. The problem is that visual 
assessment is extremely subjective: different observers may have different opinions of the 
CC at the plot. In addition, the estimation becomes more difficult if the structure of the 
forest is heterogeneous, or if the plot size is so large that the person must walk around to be 
able to assess the entire area. 
 
1.3.3 Statistical modeling  
 
It is often the situation that whereas standard forest characteristics are available, the CC was 
not estimated. In this case, models that relate CC to the known stand parameters can be 
utilized. If tree locations and diameters have been measured, models for crown radius (e.g. 
Gill et al. 2000, Bechtold 2003) can be used to create canopy maps as if the radii had been 
measured in the field. However, assuming that crown perimeters are circular may lead to 
errors (Lang and Kurvits 2007). If the tree locations are not known, they can be generated 
so that the degree of crown overlap can be predicted and taken into account. Often, the 
spatial pattern of the trees is assumed to be random (Crookston and Stage 1999), which 
may not always be true and thus can lead to inaccurate predictions (Christopher and 
Goodburn 2008). If models for typical tree patterns are available (e.g. Tomppo 1986), they 
can be utilized in the generation process. 

Field measured CC can also be modelled directly from stand characteristics such as 
basal area, tree height, and stand density. Several studies have indicated that stand basal 
area has a strong correlation with CC or canopy closure (Kuusipalo 1985, Mitchell and 
Popovich 1997, Buckley et al. 1999, Vaughn and Ritchie 2005). This is easy to understand 
as a large stem basal area also indicates a large crown area. Stand density (stems/ha), age, 
height, and crown ratio have been used as additional predictors (Kuusipalo 1985, Mitchell 
and Popovich 1997, Knowles et al. 1999). Also, using a spatial index as a predictor could 
improve the results, but such information is not commonly available. On the other hand, the 
typical spatial structure of forests and the degree of overlap will automatically be included 
in the model coefficients. One important feature of a good predictor model is that the 
predicted CC stays at the standard unit interval [0, 1]; therefore, asymptotic nonlinear or 
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piecewise models are often preferred instead of simple linear regressions (Mitchell et al. 
1997, Knowles et al.  1999). 
 
1.3.4 Remote sensing  
 
Remote sensing is the only alternative for obtaining CC information quickly for large areas. 
Remotely sensed images from aerial or satellite platforms are available at several scales 
from sub-meter to continental coverage. The classic method for CC estimation from above 
is the use of aerial images, which have traditionally been interpreted visually or with the 
help of dot count grids (Loetsch and Haller 1973, Paine and Kiser 2003). Stereo-view may 
also be utilized in the process (Korpela 2004, Heiskanen et al. 2008). Visual interpretation 
is always subjective and requires plenty of time, so calibration models may be needed 
(Fensham and Fairfax 2007). Thus, the focus of research has shifted toward computerized 
analysis of numerical aerial images. In the case of CC estimation, the most straightforward 
approach is the application of a segmentation algorithm to separate the crowns from their 
background (Culvenor 2003). For instance, in the region growing method (Wulder et al. 
2000, Pitkänen 2001), the brightest pixels in the image are assumed to represent tree tops 
and are selected as seed points. Neighboring pixels are then iteratively added to each crown 
until the stop criterion is met. This is usually performed using panchromatic images or the 
near-infrared channel (Culvenor 2003).  

High resolution aerial images are easily available for many areas, and can be acquired 
with relatively low costs. However, the estimation of CC from these is not without 
problems. First, the estimation results may depend on the scale of the images. At lower 
resolutions, large crowns may seem larger than they actually are (Fensham et al. 2002), 
while the small crowns and gaps remain unobserved (Bai et al. 2005). Second, view and 
illumination conditions and the spectral features of the trees vary both between and within 
images (Culvenor 2003). For example, in the direction of the sun the crowns seem darker 
because only their shadowed side is visible. In addition, the shadows may occlude smaller 
crowns, and also the understory may be spectrally similar to the crowns, making 
segmentation more difficult (Pouliot et al. 2002). These effects generally reduce the number 
of trees observed and they can also lead to the underestimation of crown width (Pitkänen 
2001, Korpela 2004, Mäkinen et al. 2006). In the case of boreal conifer forests, some of 
these problems can be avoided by using images taken during annual snow cover (Manninen 
et al. 2009). Even if these issues can be accounted for, the problem of the relief 
displacement effect (Mikhail et al. 2001) remains: if the plot is not located directly at nadir, 
sides of the crowns are seen as well, exactly as with ground-based AOV instruments. Thus, 
estimates obtained from aerial images may be biased even if the crowns can be segmented 
correctly, but empirical models can be used for calibration (Mäkinen et al. 2006). A better 
approach could be the utilization of photogrammetric multi-image matching methods to 
create canopy surface models directly from overlapping aerial image data (Hirschmugl 
2008), but the precision of this approach in crown width detection has not been tested. 

High resolution satellite images (e.g. Ikonos, Quickbird) also enable the detection of 
individual crowns (Palace et al. 2007, Song et al. 2010, Chopping 2011).  Canopy cover can 
also be modelled directly based on the spectral and spatial features of the image (Chubey et 
al. 2006). The advantage of the satellite over aerial images is that the effect of relief 
displacement is considerably smaller. Nevertheless, in Finland, these data are not 
commonly used because the availability of images is often limited due to cloudy weather 
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and the small coverage of individual images. Also, the costs are often considerably higher 
than with aerial images. 

Medium resolution (typically 5–30 m) sensors carried by different Landsat and SPOT 
satellites, for example, observe the Earth at several spectral bands ranging from visible blue 
to middle infrared. At these resolutions, individual tree crowns can no longer be 
distinguished, but CC can still be estimated using either an empirical or a physical 
approach. In the empirical approach, statistical models are used to link the field-measured 
reference data with the observed reflectances. Different indices describing the vegetation 
can be derived by combining two or more spectral bands; for instance, the commonly used 
NDVI (normalized difference vegetation index) is based on the red and near-infrared bands 
(Lillesand et al. 2004). The models can then be used to predict CC and other parameters for 
the whole image (e.g. Carreiras et al. 2006, Wolter et al. 2009). Empirical methods are also 
used for global forest area monitoring with low resolution (>100 m) satellite imagery 
(Hansen et al. 2003).  

The physical approach to satellite image interpretation is based on mathematical 
modeling of the transfer of solar radiation in the vegetation. These reflectance models can 
then be inverted in order to deduce biophysical properties of the forest canopy (such as CC 
and leaf area index) from the reflectances observed by the sensor (Liang 2004, Stenberg et 
al. 2008). The difficulty is that many physical models require simplifying assumptions of 
the forest structure, and the required a priori data may not always be available (Stenberg et 
al. 2008). In structurally complex boreal forests where the foliage and the background may 
have relatively similar reflectances, the plot-level CC estimation is a very difficult problem 
(Gemmell 1999, Gemmell and Varjo 1999, Gemmell et al. 2002). Nevertheless, physical 
models have been used for CC estimation more successfully in other biomes (e.g. Jasinski 
1996, Woodcock et al. 1997, Zeng et al. 2009).  

Active remote sensing sensors, including radars (radio detection and ranging) and 
LiDARs (light detection and ranging), emit electromagnetic radiation and record the 
properties and location of the backscattered signal, which can then be linked to forest 
characteristics. Radars emit microwave radiation (wavelengths approximately 0.001–1 m) 
that penetrates the atmosphere in practically all conditions (Lillesand and Kiefer 2004). 
Side-looking radars can produce images at several bands, and these features can be 
empirically linked to the measured forest parameters, such as height, volume, and leaf area 
index (e.g. Manninen et al. 2005, Holopainen et al. 2010). However, at least in Finland, 
imaging radars have not been used in practical forest inventories because the reflected radar 
signal is sensitive to soil moisture and metal objects (e.g. powerlines), for example, and the 
signal is noisy at plot level (Lillesand and Kiefer 2004). Profiling radars produce forest 
height observations directly under the platform, and thus enable the estimation of forest 
cover (e.g. Hyyppä and Hallikainen 1996). However, covering large areas by vertical 
measurement is very expensive. The precision of radars against detailed in situ CC data has 
not been tested so far. 

Many of the difficulties related to radar systems can be overcome by using laser beams 
at near-infrared wavelengths (commonly 1064 nm) instead of microwaves. These LiDAR 
sensors come in different types and may be placed on any platform, but in forestry the most 
commonly used systems are discrete return scanning LiDARs that are meant for 
topographic mapping from aerial platforms (Næsset et al. 2004). The laser scanner is 
mounted on an aircraft, which also carries a GPS and an inertial measurement unit that are 
used to record the position and orientation of the aircraft. The scanner emits laser pulses 
and records the time it takes for the echoes (typically 1–4) to return, so that the distance can 
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be calculated. During post-processing, the differentially corrected GPS data are combined 
with scanner orientation data so that a georeferenced point cloud is created (Wehr and Lohr 
1999). In the case of forests, some fraction of the echoes originates from the trees and the 
rest from the ground. Thus, the ground echoes must be recognized first so that a digital 
terrain model can be interpolated (e.g. Axelsson 2000). The Z coordinates of the echoes can 
then be normalized into heights above ground level. 

Different coverage metrics for the area of interest can be easily calculated from this type 
of data. A simple estimate of CC can be obtained by first deciding a threshold height (e.g. 
1.3 m) and then calculating the fraction of first returns above this threshold (e.g. Lovell et 
al. 2003, Rianõ et al. 2004, Morsdorf et al. 2006, Holmgren et al. 2008). As the typical off-
nadir angles of the laser pulses are small (usually less than 20°), this index resembles dot 
count measurement with a sighting tube. Nevertheless the pulses are not exactly vertical, so 
a small overestimation is likely as the oblique pulses have a smaller probability of reaching 
the ground than vertical ones (Holmgren et al. 2003). Thus, regression calibration with 
field-measured CC may be necessary (Holmgren et al. 2008). Airborne LiDAR data are 
considered to be so accurate that validation results may sometimes tell more of the quality 
of the field data than the precision of the LiDAR estimates (Smith et al. 2009). 

Terrestrial LiDARs (TLS, terrestrial laser scanning) can also be used for a detailed 
characterization of the forest canopy structure, including CC measurements (Danson et al. 
2007, Jupp et al. 2009, Korhonen et al. 2010). These LiDARs are mounted on a tripod and 
scan the surroundings in a hemispherical field of view, producing a 3D point cloud of the 
surroundings. Because of the view geometry, the TLS systems are better suited for 
measuring canopy closure or the conical gap fraction. The angular effect can be eliminated 
by creating canopy maps, which can be done, for example, by calculating the density of 
canopy echoes in a 2D grid (Korhonen et al. 2010). The number of scan locations must, 
however, be reasonably large to cover the entire plot, as most of the pulses will reflect from 
the nearest crowns. 
 
 
1.4 Objectives 
 
In Finland, the traditional method used in canopy cover estimation is systematic dot count 
sampling with the Cajanus tube (Sarvas 1953). This method yields accurate results and has 
a solid statistical background (Jennings et al. 1999, Rautiainen et al. 2005), but the 
measurements are too slow for inventories where the time available for CC estimation is at 
best a few minutes. Thus, the main objective of this thesis was to test various alternative 
CC estimation techniques, including quicker field measurement techniques, statistical 
models based on standard forest inventory parameters, and remote sensing with airborne 
LiDARs. Different field measurement techniques produce different estimates of CC, mainly 
because of differences in view geometry and crown transparency. The degree of these 
effects on the estimated CC was therefore examined.  

This thesis consists of five sub-studies. Study I introduces the terminology and field 
control method, and it also tests some of the commonly used fast ground measurement 
methods. Study II extends the first study by presenting a regression model for CC using the 
data from the same research area, and discusses its application. Study III introduces a 
modified version of the standard relascope, the crown relascope, and tests its usefulness in 
CC measurements. Study IV describes an automated method for analyzing digital canopy 
images and examines the effects of the different AOVs on the estimated CC. Finally, study 
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V tests the precision of airborne laser scanning in CC estimation and the methods for 
normalizing the effect of oblique laser pulses. This summary also includes some yet 
unpublished material, such as the nationwide version of the CC model introduced in study 
II. 

 
 

2 MATERIALS AND METHODS 
 
 
2.1 Research areas 
 
The research data, in total 263 plots with CC measurements, were gathered from several 
study sites in different parts of Finland (Table 1, Fig. 5). Most of the Finnish forests are 
managed for timber production, and especially in Southern Finland natural stands are rare 
outside nature reserves. The forests are usually harvested by clear or seed tree cutting, after 
which the clearings can be regenerated naturally, by seeding, or by planting, usually after 
soil preparation. The publicly recommended forest management scheme includes several 
thinnings during the rotation (60–120 years), but in practice the intensity of management 
depends on the forest owner, as most of the forested area is owned by individual citizens. 
The dominant species are usually Scots pine (Pinus sylvestris L.), Norway spruce (Picea 
abies L. Karst), or birches (Betula spp. L.). A few stands dominated by European aspen 
(Populus tremula L.) were also included. In Northern Finland, the climate gets colder and 
stand densities and tree heights decrease, which also mean smaller CC. 

The plots were usually located subjectively so that as diverse a data set as possible was 
obtained from each study area, and as a whole. The structural variation included different 
dominant species and site types, tree heights, stand densities and CCs. Thus the final data 
included everything from low CC seedling stands and sparsely wooded pine bogs to dense 
young forests and natural old-growth stands with high CC. Canopy cover was measured at 
each plot using the Cajanus tube (see 2.2.) and also usually with other methods for 
comparison. 

Subsets of the whole data were used in the sub-studies. In study I, the data consisted of 
a subset of 19 plots in Suonenjoki, where several field measurement techniques were 
compared. The original measurement plot type in Suonenjoki was a 25 × 24 m rectangle, 
but in the analysis phase the size of the plot was decreased to a circle with a 12.5 m radius 
for a better correspondence with the Finnish NFI. Study II, which focused on CC modeling, 
included all of the 100 plots from the Suonenjoki site for the model construction, and 30 
plots from the Koli site for testing. The empirical part of study III, in which the crown 
relascope was tested, was based on all of the available circular plots in the northernmost 
part of Finland (7 at the Rovaniemi and 66 at the Sodankylä sites), where the relatively low 
tree densities favored this measurement technique. Study IV focused on automated canopy 
image analysis, and the data consisted of all plots where the trees had reached a minimum 
height of 5 m at the Koli (n=29), Tammela (n=5), Joensuu (n=5), Rovaniemi (n=3) and 
Sodankylä (n=53) sites. Finally, the LiDAR-based CC estimation in study V was tested at 
the rectangular plots at Koli (n=30) and Hyytiälä (n=22). 
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Table 1. Study sites. 
 

  Year n Size (m)a Studies Methods 

Suonenjokib 2005-2006 100 25x24 I, II Camera, densiometer, ocular 

Koli 2006 30 30x30 II, IV, V Camera, LiDAR 

Tammela 2007 7 r=12.5 IV Camera, ocular 

Joensuu 2007 8 r=12.5 IV Camera, ocular 

Rovaniemi 2007 7 r=12.5 III, IV Camera, crown relascope, ocular 

Sodankylä 2007 68 r=12.5 III, IV Camera, crown relascope 

Evo 2008 4 r=12.5   

Paltamo 2008 3 r=12.5   

Hyytiälä 2008 24 Variable V LiDAR 

Sotkamo 2009 12 r=12.5   

Matalansaloc 2004 472 r=9.0   LiDAR 
aPlot size most commonly used in the area. Rectangular dimensions or radius are given. 
bDivided into two sub-sites, Hirsikangas and Saarinen 
cNo in situ CC measurements, LiDAR data used for model tests. 

 
 

 
Figure 5. Locations of the different study sites. 
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Table 2. Summary of the whole data set (263 plots) and separately for each dominant 
species (Scots pine 145 plots, Norway spruce 97 plots, deciduous species 21 plots). 
 

    Min Mean Max Sd 

Canopy cover (%) Pine 2.2 50.7 96.5 21.8 

 Spruce 16.6 67.8 96.8 17.2 

 Deciduous 2.4 75.4 97.5 23.7 

 All 2.2 59 97.5 22.4 

Basal area (m3/ha) Pine 0.0 16.5 54.1 10.5 

 Spruce 1.0 22.5 49.7 10.2 

 Deciduous 0.0 20.1 36.8 12.4 

 All 0.0 19.0 54.1 10.9 

Stand density (stems/ha) Pine 95 2400 12500 2230 

 Spruce 383 2500 15900 2210 

 Deciduous 250 3500 17100 3930 

 All 95 2520 17100 2410 

Stem diameter (cm) Pine 0.0 17.5 41.7 10.2 

 Spruce 2.9 19.8 66.5 10.3 

 Deciduous 0.0 17.3 37.9 11.2 

 All 0.0 18.3 66.5 10.3 

Tree height (m) Pine 0.4 13.7 32.6 7.4 

 Spruce 2.9 16.3 35.5 7.0 

 Deciduous 0.4 15.7 28.0 8.7 

  All 0.4 14.8 35.5 7.4 

 
The combined data of 263 plots were also used together in making the nationwide CC 

model, first published in this thesis summary. Table 2 displays the main stand 
characteristics for the combined data set. The nationwide model was tested by predicting 
the CC for the 472 sample plots at the Matalansalo (62° 18’N, 28° 29’ E) LiDAR study site, 
located 70 km southeast from Joensuu  (Suvanto and Maltamo 2010), and by comparing the 
results to LiDAR-based estimates.  
 

 
2.2 Canopy cover field control measurements 
 
Reliable CC control data is the basis for the results presented in this thesis. Following the 
definitions presented in section 1.2, reliable estimates of the vertical CC can only be 
obtained by covering the entire plot with unbiased vertical measurements. Based on earlier 
experience (Sarvas 1953, Johansson 1985, Rautiainen et al. 2005) and compatibility with 
the CC definition, the classic, systematic dot count sampling with the Cajanus tube was 
selected as the control method for studies I–II. In practice, the field protocol first included 
establishing the parallel sampling transects, which were located at a 2.5 m distance from 
each other in studies I–II (Suonenjoki and Koli sites). Transects were marked with a tape 
measure which allowed objective determination of the sample points. The measurements 
were taken by walking along each transect and looking up through the tube at 1 m intervals. 
If the crosshair at the top of the tube pointed at a crown (or a small gap inside the crown), 
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“1” was saved into the spreadsheet on the handheld computer, otherwise “0”. The density 
of the crown above the sample point had no effect, just the location of the point inside or 
outside of the crown perimeter mattered. After the plot was finished, the handheld computer 
showed the resulting CC directly. 

Deciding whether the point was covered or not sometimes required subjective 
consideration. If the crosshair was pointed exactly at the edge of the crown perimeter, or if 
the crown was moving slightly because of the wind, a decision was made based on the full 
field-of-view of the tube (a few degrees). If that was impossible, every second controversial 
point was classified as canopy. In a strong wind the mensuration became impossible if the 
crowns were moving continuously. Also, the rain effectively stopped the measurements as 
moisture blurs the mirror inside the tube, even if the water is wiped from the top. The 
measurement in itself was reasonably fast, especially when clearly covered or open points 
could be recorded without using the tube. However, placing the tape measures along the 
transects could take even longer than the actual measurement, depending on the terrain. 

Small seedlings and young stands where the living base of the crown might have been 
below eye level (1.7 m, the height of the tube’s crosshair) required some additional 
consideration. When interpreting the definition by Gschwantner et al. (2009) strictly, small 
seedlings should also be included in CC. Also, larger tree crowns can reach a sample point 
lower than eye level. In these cases the support staff was used to determine the coverage. 
The height threshold used to divide the covered points into “understory canopy” and “actual 
canopy” was 1.3 m, as this was the height where, for example, the canopy photographs 
were taken. If the point was covered below 1.3 m, it was saved into the spreadsheet with the 
letter “u” (seedling smaller than 1.3 m) or “a” (tree taller than 1.3 m but the crown only 
reaches the sample point below 1.3 m). These letters could be afterwards converted to 
either 1 or 0, depending on whether total cover or cover above 1.3 m was required. Dead 
trees and branches created a similar problem. According to the definition (Gschwantner et 
al. 2009), they should not be included in CC, as a crown should only include living 
branches and their foliage. Thus, single dead twigs, branches and snags were ignored, but if 
they covered a significant portion of the tube’s field of view (e.g. if the point was right 
under a dead spruce tree), the point was labeled with “k”, which could be classified as 
covered if necessary.  

The dot count measurements were taken in the Suonenjoki and Koli research sites, 
which were used in studies I-II. Starting from 2007 (studies III–V), the control 
measurement scheme changed so that line intersect sampling (LIS) (O’Brien 1989, 
Gregoire and Valentine 2007) replaced the dot counts. Now the tube was used to measure 
all start- and end-points of the canopy above the measuring tape, and the results were 
recorded to 10 cm precision. This way more precise results could be obtained, especially in 
low cover stands where the 1 m dot interval could not always detect small crown 
intersections. However, the disadvantage of the LIS method was that measuring became 
very slow in stands with a lot of small intersecting crowns. On the other hand, if the number 
of the crown edges was small, for instance in stands with big crowns or a very dense 
canopy, LIS could be even faster than the dot count. The LIS transect interval was 3.0 or 
2.5 m, depending on the plot size. 

Yet another method of obtaining the field control was tested at eight plots in the 
Hyytiälä site (study V). The tree positions at the plots had been measured in advance using 
a photogrammetric-geodetic method (Korpela et al. 2007), so the Cajanus tube was used 
with a laser rangefinder to measure crown radii in four perpendicular directions per tree. 
Subsequently, a computer script was used to calculate the CC from the known tree locations 
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and radius measurements by modeling the crowns as four quarter-ellipses. This was done 
by using a 10 cm grid for each plot and by performing an inclusion test for each grid cell. 
Furthermore, trees in the buffer zone outside the plot borders were also measured as their 
crowns often reached into the plot. 

All control measurements were taken by the author. Thus, the results could have been 
slightly different if someone else had taken the control measurements, as the decisions of 
the crown edges involved some subjectivity. In the existing studies, no significant 
differences were found between measurement takers (Johansson 1985, Vales and Bunnell 
1988). During the field campaigns, individual transects were duplicated a few times by a 
less experienced person.  The differences did not exceed 5% in these tests. Possible 
problems can in most cases be avoided by giving detailed instructions on how to act in 
unclear situations (Johansson 1985, Vales and Bunnell 1988, O’Brien 1989). 
 
 
2.3 Tests of the different field measurement techniques 
 
2.3.1 Different sampling densities with the Cajanus tube 
 
The mensuration of control values with the Cajanus tube is considered reliable, but with the 
tested sampling schemes the measurements usually took more than an hour, even in 
structurally easy plots. Thus, in study I, we tested how the reduction of sampling density 
affected the estimation of CC using the tube. In practice, this was done be removing every 
second, fourth and eighth point out of the original 195 samples, leading to densities of 102, 
49, and 23 points per plot, respectively. In addition, the sampling transects were measured 
using both the dot count and LIS methods so that the differences in results could be 
compared. 
 
2.3.2 Spherical densiometer 
 
The spherical densiometer (Lemmon 1956) was tested as a traditional AOV method. The 
instrument (Fig. 4.) is used by counting canopy proportions within each cell in the grid 
engraved on the mirror. However, earlier studies indicated that using the whole grid (60° 
AOV) would lead to a significant overestimation of CC (Bunnell and Vales 1990, Ganey 
and Block 1994, Cook et al. 1995), so the sampled AOV was reduced to about 20° by using 
just the four squares that reflected the canopy directly above the measurement point. In 
study I, the densiometer was used to sample 49 points from the Cajanus tube grid (every 
fourth point), and this sample was further reduced to 23 and 9 points per plot. In addition, 
subjective sampling was tested: the measurement taker selected ten representative points 
and measured them with the instrument.  

The original data in study I included four seedling stands (the largest had a mean height 
of 6.2 m) where the densiometer and camera methods did not produce good results. The 
reason was that the Cajanus tube was also used to record the twigs below breast height if 
the tree was taller than 1.3 m, whereas both the densiometer and camera were held at breast 
height. The AOV methods are useful only in sites where the bases of the crowns lie well 
above the measurement height. Thus, in this summary the seedling stands were removed 
from the study I densiometer and camera results in order to give a more realistic view of the 
results in real situations. 
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2.3.3 Digital cameras 
 
Compared to the spherical densiometer, the use of point-and-shoot digital cameras 
facilitates the field measurement by removing the error-prone grid cell tallying. Instead, the 
canopy image is saved as a document for further analysis. In study I at Suonenjoki, a digital 
camera was used to take five images from each plot: one at the center and the other four at 
cardinal points at an 8.5 m distance from the center. This sampling scheme had been used 
in some earlier tests related to the Finnish NFI. The AOV of the camera (Kodak DC4800) 
was approximately 63 × 49°, which was already so large that a significant bias could occur 
(Bunnell and Vales 1990, Ganey and Block 1994, Cook et al. 1995).  

The images were then analyzed manually with Paint Shop Pro software by first 
thresholding them manually. The threshold was set by the interpreter so that the 
classification of sky and canopy pixels would correspond to the original image as well as 
possible. The proportion of black pixels in the binary images could then be calculated from 
the image histogram. However, these results were in fact estimates of canopy closure, as the 
small within-crown gaps were still visible. Thus, standard tools were used to paint over the 
crowns with a black color, so that the crowns became opaque. Both painted and non-
painted images were, nevertheless, included in the analysis in study I. 

The manual post-processing described above was rather laborious. The interpreter had 
to manually select a threshold value for each image, which could lead to inconsistent results 
(Jennings et al. 1999, Jonckheere et al. 2005, Nobis and Hunziker 2005). In addition, the 
painting of the within-crown gaps had to be done carefully. However, these phases can be 
automated, as is demonstrated in study IV using the Matlab numerical computing 
environment (MathWorks Inc. 2008). The images were first thresholded using the 
automated algorithm by Nobis and Hunziker (2005) with just the blue RGB component 
(Jonckheere et al. 2005, Nobis and Hunziker 2005, Cescatti 2007). The algorithm selects 
the threshold that maximizes the mean brightness difference between the pixels on the 
crown and sky sides of the edges (Fig. 6).  

The crowns in the resulting binary images must yet be painted opaque so that only the 
between-crown gaps are visible in the final version. This was done automatically using 
morphological image analysis operations (Gonzalez and Woods 2002, pp. 523–527). The 
morphological dilation and erosion are based on the use of a moving window, which, in this 
context, is called the “structuring element”. In the dilation of a binary (1/0) image, the 
structuring element is moved through the image and if there is at least one value of “1” 
inside it, the pixel that is tested is also marked as “1”. Thus, dilation expands objects and 
fills gaps. Its opposite, erosion, labels the pixel of interest “0” if at least one “0” is present 
within the structuring element. As a result, erosion shrinks objects and expands the gaps.  

In the crown painting algorithm, the thresholded image is first dilated, then eroded 
twice, and finally dilated once more with the same structuring element. The first dilation 
followed by erosion is commonly called morphological closing, an operation that removes 
the small gaps within the crowns. The next erosion followed by dilation can 
correspondingly be called morphological opening; this operation is used to smooth the final 
image by eliminating the unnecessary details introduced in the closing (Gonzalez and 
Woods 2002). The structuring element used to perform these operations was disc-shaped to 
increase the smoothness of the crown perimeters. The final image showed only the large 
between-crown gaps, where CC could be estimated as the percentage of black pixels (Fig. 
6). 
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Figure 6. Automated canopy image analysis. The upper-left image shows the original blue 
channel. The upper-right graph shows the mean brightness difference at each possible 8-bit 
brightness threshold. The lower-left image shows the result of thresholding, and in the lower-
right image the crowns were painted black using the morphological method so that just the 
between-crown gaps are visible. 
 
The image processing chain was first validated by comparing the CCs derived manually 
and the automatically analyzed images from the Koli site. Then, just the automated 
processing was used to estimate CC for the rest of the data, and, finally, the results were 
compared to the Cajanus tube estimates. In study I, the whole rectangular image area was 
considered, but in study IV, a circular area determined by the given AOV was used instead. 
In addition, the effect of different AOVs was tested by decreasing the size of analyzed area. 
Different point-and-shoot cameras were used in the field, but the image resolution was kept 
at the minimum 640 × 480 pixels, which sufficed for determination of the large between-
crown gaps. The number of images required for reliable estimates at plot level was also 
estimated based on the variance between the images. 
 
2.3.4 Crown relascope 
 
Walter Bitterlich’s original idea of measuring crowns with relascopes (Bitterlich 1961) was 
based on the visual projection of the crown width to eye level. The visual part can be 
avoided if the entire crown can be seen through the relascope’s slot, i.e. the slot must be 
very high and wide. In study III, we presented the crown relascope, which is suitable for 
this type of measurement. The first prototypes had a solid distance stick and a fork-shaped 
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slot, but this design was soon found to be rather cumbersome. Thus, the slot was replaced 
by a long plastic sheet and the stick with a short string to increase portability (Fig. 7). 

The problem with crown relascope measurements is that the height at which the largest 
crown width occurs is not constant, and therefore the relascope’s slot must be very high. 
Because of this, the BAF must be defined slightly differently for the crown relascope. 
Normally, a stem is tallied if its convex closure appears wider than the relascope's slot, i.e. 
the real stem width cannot be seen from a close distance. As the stem intersections are 
assumed to be circular, this does not matter as the crown radius is related to the sine of the 
relascope’s half angle and the tree’s distance (Bitterlich 1984). But in three dimensions, the 
circularity assumption should be generalized to spherical crown shape, which is not 
realistic. This can be avoided by changing the definition of BAF so that instead of the 
visible crown width, the true crown width perpendicular to the look direction should be 
sighted. The BAF would thus be based on the tangent instead of the sine. Thus, it is better 
to use separate concept CBAF (crown basal area factor) for the crown relascope. For 
example, a cylindrical crown near the measurement taker must be measured at a very steep 
angle. The apparent crown width, or the width of the crown's convex closure, is larger near 
the base of the crown because the distance to the eye is smaller. The true crown width is 
constant, so the observer must ignore the branches reaching slightly towards her/him, and 
make the inclusion decision based on perpendicular branches. Whilst this is not possible for 
opaque objects such as stems, it is for transparent crowns, although careful consideration is 
required during the measurement. 
 

 

s = 11.7 cm 

w = 3.7 cm 

h = 25.0 cm 

 
Figure 7. The design of a crown relascope with a basal area factor of 250. Image reprinted 
from Canadian Journal of Forest Research. 
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In practice, the effect of the CBAF definition on CC estimation is small compared to 

other error sources. One practical problem is that the crown intersections are still assumed 
to be circular, which is not true, as the real crown area is practically always smaller than the 
area of a circle drawn around it. Another assumption is that the crowns do not overlap. If 
these assumptions are not met, CC will be overestimated. The more distant crowns may 
remain partially or totally occluded, so the measurement taker must be very precise in 
observing everything. In order to keep the measurement accurate, the relascope's slot must 
be kept vertical and the distance stick horizontal, which further increases the challenge. 

In study III, a sheet-and-string crown relascope with CBAF=250 was tested at the two 
northernmost study sites, Rovaniemi and Sodankylä. This region is well suited for crown 
relascope measurements as the tree densities are usually low and crown overlap is not too 
common. The CBAF of 250 was chosen as a compromise – smaller CBAFs such as 100 
would lead to more accurate results in sites with a low tree density, but in a forest with 60% 
CC, for example, the tally should include 60 trees, which is quite a large number. On the 
other hand, larger CBAFs do not necessarily represent the whole plot if the crowns are not 
very wide. In study III, the crown relascope was used at every plot without considering 
whether the plot was actually suitable for this measurement (good visibility, small overlap); 
with a stricter stand selection, better results could have been obtained.  
 
2.3.5 Ocular estimation  
 
Ocular estimation is the simplest method for making in situ CC estimates. In study I, the 
ocular estimates were made by three people: the author and two Finnish NFI group leaders 
who had been making this kind of estimation in practice. The author made the estimations 
before measuring the stand with a Cajanus tube, and thus had a chance to learn from the 
earlier plots. Before the test, the group leaders were told to make the estimations as they 
had done before the test during the summer’s NFI, i.e. no instructions were given. 

Another previously unreported test was performed in spring 2007 during the Finnish 
NFI training days at the Tammela, Joensuu and Rovaniemi sites. The group leaders who 
were responsible for making the CC estimations were given instructions on how CC is 
defined and which things should be considered during the assessment. They recorded the 
estimates at each plot before the Cajanus tube CC was given. This way, they could learn 
from the earlier plots and calibrate their eyes for the next summer's campaign. 
 

 
2.4 Statistical canopy cover models 
 
The aim of study II was to model CC based on the forest characteristics that are commonly 
available at forestry stand registers, such as basal area, tree height, diameter at breast 
height, site index, and species proportions, and so forth. The tree locations and other 
metrics describing the spatial tree pattern are not usually available, so this work focused on 
the direct utilization of correlations linking the CC to the known inputs.  

In case of CC modeling, the dependent variable is a percentage. This creates two 
possible difficulties if simple linear regression is used. First, the model may produce 
estimates that are outside the standard unit interval [0, 1]. Secondly, when percentage 
variables are predicted, the error distributions are often asymmetric (Ferrari and Cribari-
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Neto 2004), which contradicts the residual normality assumption of the linear regression 
analysis. Thus, instead of the normal linear regression, a relatively new modeling technique 
called beta regression (Ferrari and Cribari-Neto 2004) was introduced in study II for CC 
modeling.  

The beta regression method is an extension of the generalized linear models (GLMs) 
(McCullagh and Nelder 1989), and it is especially meant for modeling rates and 
proportions. The GLMs differ from the standard linear regression in that the expected 
values μi of the random variable Y are replaced by a link function g(μi) = η, where η is a 
linear combination of the predictor variables. The purpose of the link function is to stabilize 
the error variance and transform the fitted values to the desired application range. In 
addition, the error distribution of the model can be chosen independently, whereas in linear 
regression the error distribution is always assumed to be normal. 

In the beta regression, the residuals are assumed to follow a beta distribution, which is a 
better assumption than the usual residual normality. In percentage modeling, the link 
function must be chosen so that it is asymptotic at both ends so that the model does not 
produce irrational estimates. Several asymptotic link functions can be used for beta 
regression, but the logistic link function was chosen in study II (Eq. 1) (McCullagh and 
Nelder 1989, p. 108): 
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where μ = predicted canopy cover, η = linear combination of predictor variables, xj = vector 
of predictor variables, and βj = vector of model coefficients. The predicted values were 
obtained as the inverse of the logistic function (Eq. 2): 
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The model parameters were estimated using the maximum likelihood method in the R 

statistical computing environment (R Development Core Team 2008), with an additional 
betareg library. The estimation procedure is slightly different from the standard GLM 
estimation since the beta distribution does not belong to the exponential family (Ferrari and 
Cribari-Neto 2004). 

In study II, local CC models for Scots pine (n=52) and Norway spruce (n=48) 
dominated plots were constructed with the beta regression technique using the data from the 
Suonenjoki research site. Coefficients of determination, standard errors, residual plots and 
Akaike Information Criterion (AIC) (Sakamoto et al. 1986) were used for a comparison of 
model performance. The models were cross-validated by randomly removing ten (pine 
data) or nine (spruce data) plots from the base data and refitting the model with the 
remaining plots, which was repeated a hundred times for each model.  

A combined data set of 263 plots was used to make nationwide versions of the local 
models presented in study II. As the modeling data were from different parts of Finland, 
north coordinate was introduced as an additional predictor. Because the number of plots 
dominated by the deciduous species was small (n=21), the deciduous stands were included 
in the Norway spruce model and the proportion of the deciduous trees in the basal area was 
used as an additional predictor. Site quality was described by dummy variables representing 
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different taxation classes (Valtakunnan metsien… 2008). These models were also cross-
validated and, in addition, the model predictions were compared to the CC estimated from 
the airborne LiDAR data at the Matalansalo site (see 2.6).  
 

 
2.5 Airborne laser scanning 
 
The use of airborne laser scanning in CC estimation was tested in study V. Several LiDAR 
data sets were available from the Koli and Hyytiälä study sites, but in this summary just the 
main results from the Koli 2005 and Hyytiälä 2007 and 2008 1 km scans (Table 3) are 
discussed. For the Koli site, all of the 30 rectangular sample plots that were measured in 
spring 2006 were included in the scanned area. For the Hyytiälä site, 22 rectangular sample 
plots were covered. Both the Hyytiälä 2007 scan and the Koli scan were flown with fairly 
similar acquisition settings, so that the pulse density was high enough to recognize 
individual trees (4.6–10.3 pulses per m2). The Hyytiälä 2008 1 km scan differed from the 
normal forestry scanning set-up in that the half scan angle was exceptionally high, at 32.5°. 

Several different approaches for obtaining the CC from the LiDAR data were tested. In 
all cases, only the single and first-of-many echoes were used, as they included all of the 
information required for CC studies (Morsdorf et al. 2006). The simplest of the test 
techniques was to calculate the proportion of canopy echoes above the 1.3 m height 
threshold. In study V, this index was labeled as the FCI (First echo Cover Index) to separate 
it from the other indices that included other echo types. This index was then compared to 
the Cajanus tube reference (where the canopy elements below 1.3 m were ignored) using all 
of the available date sets. 

The problem with the scanning LiDAR is that most of the pulses emitted are not exactly 
vertical, which may lead to a slight overestimation of CC. This happens because the pulses 
arriving at an oblique angle have a larger likelihood of hitting a crown than vertical ones. 
Holmgren et al. (2003) proposed several methods that could be used to decrease this bias. 
The first alternative is to just use the vertical echoes. We evaluated this approach by using 
only the echoes from the nearest strip. Another alternative is to make linear regression 
models where the scan zenith angle and other LiDAR-derived variables are used to predict 
the bias in the estimated CC. This was tested with the Hyytiälä LiDAR data, where mean 
scan zenith angles were calculated for each plot and scan strip. 
 

 
Table 3. The most important airborne LiDAR data sets used in study V and their acquisition 
parameters. Both scanners operated at a 1064 nm wavelength.  

 
  Koli 2005 1 km Hyytiälä 2007 1 km Hyytiälä 2008 1 km 

Date July 13 July 4 August 23 

Sensor ALTM 3100 ALS50-II ALS50-II 

Mean range, m 950 780 960 

Half scan angle 11° 15° 32.5° 

Mean pulse density m-1 4.6 10.3 2.7 

Mean footprint diameter, cm 29 12 14 

Pulse frequency, kHz 100 115.8 92 

Scan frequency, Hz 70 52 35 
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Figure 8. A canopy map derived from airborne LiDAR data using morphological image 
analysis. 

 
One way of decreasing the overestimation is to allocate the laser echoes to a grid and to 

use the grid in the CC calculations instead of using the echoes directly. As the oblique 
pulses tend to gather on the crowns, selecting just one echo from each grid cell typically 
increases the proportion of ground echoes and thus decreases the overestimation. The first 
of the grid-based methods to be tested was where a random echo was selected to represent 
each cell and then the FCI was calculated from the selected echoes. This approach is similar 
to the data decimation technique by Vauhkonen et al. (2008). An alternative method is to 
select the highest echo from each cell. The mapping of maximum cell heights leads to the 
commonly used canopy height model (CHM) method (Hyyppä et al. 2001). The CHM can 
be used for mapping the location of canopy gaps, as well as for estimating CC.  

Canopy maps of a finer resolution can be derived by using morphological image 
analysis (Wang et al. 2008). In this approach, the morphological dilation and erosion 
operations (Gonzalez and Woods 2002) are used to fill the gaps in the sparsely populated 
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initial canopy map, exactly as was done for the thresholded canopy images (see 2.3.3.). The 
only difference is that the within-crown gaps are now empty pixels between the cells that 
had canopy echoes. In study V, the echoes were allocated to a 0.1 m resolution grid, which 
was then processed with the morphological closing and opening operations. The final map 
(Fig. 8) shows which parts of the plot are covered by the canopy.  
 
 
2.6 Comparison of the nationwide model estimates to airborne LiDAR data   
 
The nationwide CC models were tested by predicting the CC for the data set containing 472 
plots collected from the Matalansalo LiDAR study site. The Matalansalo plot data mainly 
included typical conifer-dominated (pine n = 269, spruce n = 165, other species n = 38) 
managed forests with relatively high LiDAR-based cover estimates (40%–99%). The 
LiDAR data were obtained using the ALTM 1233 scanner with a relatively low pulse 
density (0.7/m2) and a 15° half scan angle. The FCI index, with a 1.3 m height threshold, 
was used as the control CC, to which the model-based CC estimates were compared. No 
corrections to the LiDAR-based FCI were made due to the low pulse density and the lack of 
scan zenith angle data. 

 
 

2.7 Accuracy assessment 
 
The statistical methodologies used for confirming the conclusions varied slightly in the sub-
studies. In this summary, the accuracies of the different techniques are evaluated as in study 
IV, i.e. the root mean squared errors (RMSEs), biases, confidence intervals for the biases, 
and largest positive and negative errors are given. Assuming that the measured control 
values equalled the true CC at the plot, the RMSE and bias were calculated as: 
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In equations 3 and 4, y is the canopy cover measured using the control method, ŷ is the 

canopy cover estimated by another method, and n is the total number of plots for which the 
comparison was made. More precisely, as the control result was obtained by the Cajanus 
tube it is not the real CC but only the best available estimate. Thus the RMSE and bias 
should actually be called root mean square difference and average difference, respectively. 
However, it is more convenient to assume that the CC control is correct and to use the well-
known concepts of the RMSE and bias. The RMSD concept was only used when 
comparing the two control methods, dot count and LIS, to each other. Note that the 
commonly used notation y-ŷ in equations 3 and 4 means that if the control value is 
overestimated, the bias will be negative. 
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It was also interesting to test whether or not the biases differed significantly from zero. 

This was studied by calculating the 95% confidence intervals (CI) for the bias (Eq. 5): 
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where s is the standard deviation of the differences from the control, t is the critical value at 
confidence level α from the Student’s t distribution, and n is the number of plots where the 
comparison was made. The lower and upper confidence limits are denoted as Lmin and Lmax. 
The largest over- and underestimations were also important criteria for the evaluation. At 
the individual plot level, an error smaller than 10% was considered to be a good result, 
while errors larger than 15% indicated low reliability. All error percentages presented in 
this summary and the sub-studies are absolute errors (i.e. percentage points); relative errors 
(i.e. the absolute error divided by the mean of the reference attribute) were not used. 

The theoretical precision of the dot count estimates was assessed using binomial 
distribution. Because of the systematic sampling scheme and the spatial autocorrelation, the 
variance estimates were not unbiased, but the theoretical values still offer an interesting 
approximation. If the observations were uncorrelated, the variance of the estimated CC at 
an individual plot could be estimated as: 
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where n is the number of Cajanus tube measurements. In the case of a finite population 
size, such as in the reduction of the point density from n=195, the sample variance was 
calculated as (Thompson 2002, p. 40): 
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n

CCCC

N

nN
CC       (7) 

 
where n is the sample size and N the population size. The theoretical RMSE (i.e. the 
standard error of the mean) was calculated from the mean of the individual plot variances: 
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where )ˆr(âv CC  is the mean of the plot-wise variance estimates. 
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3 RESULTS 
 
 
3.1 Ground measurement techniques 
 
3.1.1 Comparison of the two control methods 
 
The combined results from studies I, III and IV are shown in Table 4. First, it is interesting 
to compare the results from 195 points dot count grid to the LIS estimates from the same 
transects. The RMSD between the 195 points dot count and the LIS method was 2.5%, the 
mean difference was near zero (0.3%), and the largest difference was 5.4% (Table 4). The 
theoretical standard deviation of the 195 point estimate is at maximum 3.6% (Eq. 6, CC = 
50%). When the CCs at the individual plots are included, the theoretical RMSE (Eq. 8) is 
slightly smaller, 3.3%. The observed RMSD between the dot count and LIS methods is 
close to this value, but, as the same transects were used, the estimates are not independent 
and cannot be directly compared. Still, both methods should produce a reasonably accurate 
control value. Actually, the LIS method could be more accurate on some occasions as all 
gaps at the transects were recorded at a 10 cm resolution. On the other hand, the LIS 
method requires that all of the start and end points of continuous canopy areas are recorded 
without bias. Thus, the dot count method could be considered as slightly less subjective and 
easier to explain to new workers, as the number of unclear sample points is usually small. 

 
3.1.2 Cajanus tube and spherical densiometer with lower sampling densities 
 
The RMSEs obtained by systematically reducing the 195 point dot count data to 102, 49, 
and 23 points were 1.5%, 4.7% and 7.4%, respectively (Table 4). The largest bias was 
1.6%, and the zero bias always remained well within the confidence interval. If these point 
densities were sampled from an infinite population (as was done for the 195 points data), 
the theoretical worst case standard deviations (Eq. 6, CC = 50%) would be 5.0%, 7.1% and 
10.4%, respectively. However, as the samples originated from a finite population with N = 
195, equations 7 and 8 must be used instead. The theoretical RMSEs obtained this way 
were 3.2%, 5.7%, and 9.2%, respectively, i.e. clearly larger than the empirical RMSEs. For 
comparison, the same analysis was repeated by using simple random sampling (SRS) 
without replacement instead of systematic sampling. The SRS was repeated a hundred 
times for each plot, and the mean variance was used in the calculations. The empirical 
RMSEs obtained this way were close to the theoretical RMSEs (3.0%, 5.5%, and 8.6%, 
respectively). Thus, in this case, the systematic data reduction produced better estimates 
than the reduction by SRS. The effect of systematic sampling from a finite population, 
together with the initial uncertainty of the 195 points estimate, explains why the observed 
RMSEs differ from the standard binomial theory.  

The spherical densiometer produced systematically worse results than the Cajanus tube 
when the entire data set was considered (study I). However, when the seedling stands were 
omitted (Table 4), the situation was reversed: the RMSEs for 49, 23, and 9 point grids were 
4.6%, 5.2%, and 6.9%, respectively. The removal of the seedling stands where the CC was 
usually heavily underestimated revealed that the bias of the most reliable grid, the 49 points 
grid, was rather small (-2.2%), but the Lmax of the bias was only barely above zero (0.1%). 
For the Cajanus tube with 49 points, the bias was only -0.2%, i.e. the use of the densiometer 
with 20° AOV increased the overestimation by 2% points. 
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Table 4. Combined results from studies I, III, and IV. The control method in study I was the 
Cajanus tube dot count with 195 points per plot, and in studies III and IV LIS with 3 m line 
intervals was used. Negative numbers indicate overestimation. 
 

                    
Study Method Sample 

size 
n RMSE Bias Bias 

Lmin 
Bias 
Lmax 

Min Max 

I Cajanus tube, LIS  19 2.5 0.3 -1.0 1.5 -4.0 5.3 

 
Cajanus tube, dot 
count 

102 19 1.5 -0.4 -1.1 0.4 -3.0 3.4 

 
Cajanus tube, dot 
count 

49 19 4.7 -0.2 -2.5 2.1 -8.4 8.5 

 
Cajanus tube, dot 
count 

23 19 7.4 1.6 -2.0 5.2 -14.4 16.0 

 Densiometer, 20° 49 15 4.6 -2.2 -4.6 0.1 -8.0 6.7 

 Densiometer, 20° 23 15 5.2 -1.5 -4.3 1.4 -8.1 8.4 

 Densiometer, 20° 9 15 6.9 -0.6 -4.6 3.3 -12.7 13.3 

 
Densiometer, 
subjective, 20° 

10 15 7.1 3.4 -0.1 7.0 -5.5 18.6 

 Ocular A  14 7.7 -0.8 -5.4 3.8 -13.7 13.2 

 Ocular B  19 10.7 6.4 2.1 10.6 -8.5 24.8 

 Ocular C  19 19.1 16.2 11.2 21.2 -6.5 36.2 

 
Canopy image, 
63×49° 

5 14 14.3 9.4 3.0 15.8 -9.9 32.2 

  
Painted canopy 
image, 63×49° 

5 14 8.4 -4.5 -8.7 -0.2 -16.1 8.9 

III Crown relascope 1 73 9.3 -3.1 -5.1 -1.0 -24.5 18.6 

IV 
Automated image 
analysis, 1° 

9 95 16.8 4.4 1.1 7.7 -34.4 48.2 

 
Automated image 
analysis, 5° 

9 95 15.2 4.9 2 7.9 -31 43.7 

 
Automated image 
analysis, 10° 

9 95 13.5 4.5 1.9 7.1 -28.1 33.3 

 
Automated image 
analysis, 15° 

9 95 12.2 4 1.6 6.3 -25.5 30.1 

 
Automated image 
analysis, 20° 

9 95 10.8 3.3 1.2 5.4 -23.1 28.2 

 
Automated image 
analysis, 25° 

9 95 9.6 2.4 0.5 4.3 -20.7 26.1 

 
Automated image 
analysis, 30° 

9 95 8.7 1.5 -0.3 3.2 -19.4 23.9 

 
Automated image 
analysis, 35° 

9 95 7.9 0.5 -1.2 2.1 -19.7 21.7 

 
Automated image 
analysis, 40° 

9 95 7.4 -0.6 -2.1 0.9 -21.2 19.0 

 
Automated image 
analysis, 45° 

9 95 7.2 -1.5 -3 -0.1 -22.1 16.8 

  
Automated image 
analysis, 50° 

9 95 7.2 -2.3 -3.7 -0.9 -22.8 15 
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The results of the subjective sampling with the densiometer in the mature stands (Table 
4) were slightly worse than with the nine point systematic grid (RMSE 6.9% vs. 7.1%, bias 
3.4% vs. -0.6%, respectively). Apparently, the subjective points were more frequently 
located in open places, especially in dense stands where taking readings under the canopy 
could be difficult because of low-reaching branches and thickets. This is the most likely 
explanation for the underestimation of the CC. However, when seedling stands were 
included (study I), the results of the subjective sampling appeared to be better because the 
mensuration problems at the seedling stands could be compensated by visual judgment. 
 
3.1.3 Digital cameras 
 
The first thing that was learned from the use of the point-and-shoot cameras in study I was 
that the within-crown gaps had a considerable effect on the CC estimates from the images 
(i.e. they measured canopy closure, not canopy cover). When the seedling stands were 
ignored, the plain thresholded canopy images underestimated CC by 9.4%, but when the 
within-crown gaps were painted over, the underestimation became a 4.5% overestimation 
(Table 4). The CIs show that both biases were statistically significant. Despite the 
overestimation, the painted images produced a moderate RMSE of 8.4% and the largest 
error was no more than 16.1%. Thus, there was room for further tests, which are presented 
in study IV. 

The first aim of study IV was the development of an automated procedure for analyzing 
the skyward-looking canopy images. The Matlab script described in section 2.3.3 proved to 
be capable of replacing the time-consuming manual processing. The image-by-image 
comparison using images from the Koli site revealed that the RMSE of the automated script 
compared to manual processing was 2.3% and the bias was only -0.2% when a disc-shaped 
structuring element with a 10 pixel radius was used with the 640 × 480 pixel images. This 
difference was so small and the saving of time so large that it is clearly not worthwhile 
processing images manually (except for comparison) if the possibility of automated 
analysis exists. An additional benefit was that the script could be modified so that instead of 
analyzing the whole rectangular image, a circular part of it defined by a given AOV could 
be used. Thus, it was possible to easily study the effect of different AOVs just by 
modifying the script. These results are also given in Table 4. 

The plot size and sampling scheme in study IV varied between the Koli and the test 
data. However, nine images per plot were taken in both data sets, and, as the number of 
possible sample points (images) can be considered infinite regardless of the plot size, the 
data from all sites are combined in Table 4. The data included a few young stands (smallest 
mean height 6.5 m) but in a larger data set their influence was negligible, so there was no 
need to exclude outliers. The best results were obtained with the largest AOVs. For 
example, with a 40° AOV the automated image processing was practically unbiased (-
0.6%) with an RMSE of 7.4% when compared to the Cajanus tube. This result is slightly 
worse than that with the 20° densiometer in study I, but it must be remembered that the data 
used in study IV was much more versatile than the 19-plot Suonenjoki data, from which the 
four seedling stands were removed. The separate comparisons in study IV revealed that at 
the Koli site the RMSE of the automated camera method at 40° was only 4.7%, but in the 
test data it was 8.3%. The biggest errors occurred at sites where the stand structure was 
heterogeneous, typically if the vegetation at the plot center differed from the surroundings. 
This could have been avoided by moving some of the image points further away from the 
plot center. 
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In addition, there was an interesting trend in the development of bias when the AOV 
was increased from 1° to 50° (Table 4). When just the sample point was considered 
(AOV=1°), CC was underestimated by 4.4%, but with the increasing AOV, the bias 
reached zero between 35° and 40°. When the AOV was increased even more, the expected 
overestimation of CC started to emerge. The increase in estimated CC is natural, but the 
one degree measurement should actually be unbiased, even with just nine points. The likely 
reason for this was the rule that images should not be taken closer than 50 cm from the 
nearest stem, because large stems near the camera hide a large proportion of the 
surrounding canopy. In addition, the image locations were slightly subjective. Directions to 
the sampling point were determined using a compass, and the distance by 1 m steps. These 
reasons probably contributed to the bias in the image locations towards canopy gaps. 

Study IV also considered the required sample size. The required number of images 
needed for reliable results depended on the stand structure. More images were needed in 
sites with large between-image variances in CC; these were typically places where CC was 
near 50%, the trees were not very tall, and the height of the living base of the crown was 
low. Thus, many images had a CC close to 100%, whereas the others showed only sky. 
Study IV indicated that in sites like these, more than 40 images per plot may be needed for 
reliable estimates. On the other hand, in homogeneous stands where the CC is near zero or 
100%, a single image may be enough. Generally, these results indicated that an adequate 
sampling density would be 20–40 images per plot if the AOV was 30–40°. This could be 
too much for easy sites, but in any case it should not produce very large errors. Attention 
should also be paid to the unbiased selection of the image locations. 
 
3.1.4 Crown relascope 
 
The tests with the crown relascope (CBAF=250) in study III revealed that the relascope 
estimates had a high correlation with the Cajanus tube measurements (R2=0.83). The 
RMSE was 9.3%, which is comparable to the other quick mensuration techniques presented 
here (Table 4). The negative bias of -3.1% with the CI [-5.1, -1.0] differed significantly 
from zero. This overestimation was expected as the assumptions of crown circularity and 
the lack of crown overlap were not met in practice. The results would probably have been 
better if the data had been restricted to stands without crown overlap, but the degree of 
overlap was not evaluated in the field and therefore such a test could not be performed. It 
was also impossible to deduce the reasons for errors at the individual plot level, but 
typically the errors were large for young stands, which more frequently had a clumped 
spatial structure and significant crown overlap. One problem in this comparison was the 
fixed CBAF: for example, from a 12.5 m distance, the crown width had to be 3.9 m or more 
to be included in the CBAF=250. Thus, if the crowns were small, the results only 
represented the central part of the plot, which contributed to the large errors for the young 
stands. 
 
3.1.5 Ocular estimation 
 
Finally, the results of the ocular estimation in study I and the NFI training days are given in 
Table 4 and Figure 9. In study I, the author’s (ocular A) RMSE was 7.7% and the estimates 
were practically unbiased. The NFI group leaders, however, underestimated CC heavily 
(RMSEs 10.7% and 19.1%, biases 6.4% and 16.2% for B and C, respectively). The results 
clearly indicated that the experience gained from earlier plots helped to provide unbiased 
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estimates. It was clear that the training that B and C had received was inadequate for 
obtaining reliable results. 

Because of these problems, every group leader visited 7–8 control plots during the NFI 
training days in spring 2007.  This time, they were given instructions and feedback for each 
plot. The combined RMSE and bias histograms of this test are shown in Figure 9. The 
RMSEs showed a large variation (mean 8.7%, sd 2.7%), i.e. some group leaders were very 
good, obtaining RMSEs smaller than 5%, while the others commonly obtained errors larger 
than 15%. The bias histogram again shows that underestimation was more common than 
overestimation (mean 3.8%, sd 2.9%). It seems that it is difficult to observe the true width 
of the crowns from the ground, and the CC is therefore easily underestimated. Thus, it is 
clear that training and previous experience are needed if ocular estimations are to be used in 
practical inventories. 
 

 
3.2 Statistical models 
 
The development of statistical CC models in study II started with an analysis of the 
correlations between CC and the possible predictor variables. Strong but nonlinear 
relationships were found, and, as expected, the basal area showed the highest correlation 
with CC. When the same analysis was repeated with the whole data set of 236 plots (Fig. 
10a), the basal area still had a strong correlation with CC, but the correlation with tree 
height was less clear (Fig. 10b). This is natural, as height alone does not indicate how many 
trees there are at a plot. Height information could nevertheless be utilized as a predictor. 

 

 
Figure 9. RMSE and bias histograms from ocular estimations during the Finnish NFI training 
days. 
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Figure 10. A scatterplot of canopy cover against basal area (a) and mean height (b). 

 
 
Several models were fitted and tested in study II. The model that was best suited for 

practical use was the standard model, which had basal area and tree height as the general 
predictors (Table 5). In addition, dummy variables for unusually fertile and poor site types 
were included in the pine model (converted to equivalent taxation classes in Table 5) and 
the percentage of hardwoods were included in the spruce model. Because of the strong 
nonlinear relationships, the cubic form of basal area was used as the predictor as the model 
fit obtained this way was considerably better than with the linear or quadratic forms. For 
the Norway spruce model, height was also included as a cubic polynomial, but for the Scots 
pine model the cubic form of height did not significantly improve the model. The standard 
errors of the pine and spruce models were 6.3% and 5.9%, respectively, indicating a 
relatively good model fit. In the cross-validation test the errors increased to 7.0% and 6.8%, 
which are better indicators of the model’s precision in real applications.  

The interpretation of the Suonenjoki model coefficients revealed that increasing the 
basal area led to an increase in the predicted CC, as expected. Conversely, the effect of 
increasing the height on the predicted CC was negative in both models, i.e. for a constant 
basal area, taller stands had a lower CC than young stands with smaller trees. This is in fact 
logical, as a young stand with a basal area of 20 m2/ha would be very dense, but in a mature 
stand a relatively low tree density would accumulate the same basal area. This result is 
typical for Finnish managed forests, where thinnings decrease CC during the rotation. In 
undisturbed stands, the height coefficient could also be positive if the increase in CC due to 
the radial growth of the crowns exceeded the increase in the gaps due to natural mortality. 
The fertile site dummy coefficient was positive and the poor site dummy coefficient 
negative, i.e. the poor site logically meant a lower CC and the fertile site a larger CC. The 
coefficient of the hardwood percentage was also positive, which is explained by the fact 
that deciduous species generally have wider crowns than pines or spruces of a similar size. 

The nationwide CC models were made separately for Scots pine and the other species 
using the combined data from all study sites. The results are shown in Table 5 and Figure 
11. The model shape was similar to the standard model, i.e. the cubic form of the basal area 
and tree height (quadratic form in the model for the other species) were the most significant 
predictors. Additional predictors included the percentage of hardwoods, north coordinate, 
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and taxation class. The relationship of the CC with the basal area and hardwood percentage 
was still positive, and with the height it was negative. The north coordinate coefficient was 
also negative as forests in Northern Finland are typically less dense and the crowns are 
narrower. The taxation class coefficients were also logical: positive for classes more fertile 
than the most common class (pine: II, i.e. Vaccinium type; other species IB, i.e. Myrtillus 
type) and negative for the less fertile classes. The model standard and cross-validation 
errors were 1.3%–2.6% larger than the errors of the local Suonenjoki models as the base 
data of the nationwide model were considerably more diverse with different species 
compositions, site types and geographical areas. The fitted vs. the observed value 
scatterplots (Fig. 11) show that some outliers remained in both models. In particular, the 
low end of the other species plot has some large residuals, but in practice this should not be 
a very large problem as the fertile sites where Norway spruce or deciduous species usually 
dominate quickly develop a fairly high CC. 

 
 
Table 5. Canopy cover models based on the Suonenjoki and nationwide data sets. 
 

 Suonenjoki Nationwide 

  Pine Spruce Pine Other 

Constant -1.1194 –0.48019 3.7649 4.7275 

G 0.23663 0.32488 0.22080 0.18576 

G2 -0.0038168 -0.0093056 -0.00509344 -0.0031324 

G3 9.2475 x 10–6 0.00011171 0.0000505010 0.000022933 

H -0.095561 -0.15779 -0.0701077 -0.1134 

H2  -0.002459  0.0011494 

H3  0.00015333   

HW  1.5203 1.5863 1.3662 

WGSN   -0.078522 -0.083663 

IA    0.29471 

IB 0.16055  0.26180  

II    -0.3755 

III -0.30635  -0.17353 -0.57567 

IV   -0.55582  

WL   -1.2818  

φ 55.619 55.986 33.842 28.413 

Rp
2 0.914 0.871 0.871 0.798 

s.e. (%) 6.3 5.9 7.7 7.8 

CV s.e. (%) 7.0 6.8 8.3 9.4 

AIC -131.9 -127.0 -321.0 -257.3 

 
Abbreviations: G, basal area (m2/ha); H, mean height (m); HW, hardwood percentage (in 
hundredths); WGSN, north coordinate (WGS84);  IA-IV, taxation classes from most fertile to 
least fertile; WL, wasteland (yearly growth less than 0.1 m3/ha); φ, model precision 
parameter; Rp

2, pseudo coefficient of determination; s.e., residual standard error; CV s.e., 
cross-validated standard error; AIC, Akaike information criterion. 
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Figure 11. Fitted values versus observed canopy cover for the nationwide models. The 
dashed lines show 10% error limits. 
 

 
3.3 Airborne laser scanning 
 
The main results from the airborne LiDAR tests in study V are given in Table 6. The simple 
proportion of first and single-canopy echoes (FCI) estimated the CC with very a high 
precision (RMSE 3.7%), especially at the Koli site. The 3.1% overestimation due to the 
oblique scan zenith angles explains most of the RMSE. The FCI results for the Hyytiälä 
2007 scan were not as good (RMSE 7.0%, bias -4.6%), mainly because of the ALS50-II 
scanner that produced dense, unevenly distributed point clouds near the maximal scan angle 
(study V, Fig. 6). In addition, the field control values appeared to be less accurate in the 
plots where crown radius measurements were used instead of the LIS method as the three 
largest errors occurred in these plots. Inaccuracies in tree position data could have 
contributed to the errors, but it is more likely that the four perpendicular crown radius 
measurements did not describe the horizontal crown shape well enough. 

The Hyytiälä 2008 1 km scan was clearly not suitable for CC estimation (RMSE 12.5%, 
bias -9.2%). The explanation for this is clearly the large 32° half scan angle, which led to 
large strip intervals where most plots were only seen in a large side-view.  

The decimation of the LiDAR data to a density of one pulse per square meter (which is 
close to the typical density in practical forest inventories) decreased the bias at Koli by 1%, 
but in the Hyytiälä 2007 and 2008 data this was decreased by 4.5% and 2.9%, respectively. 
Selecting just one random echo from each cell clearly decreased the point density in the 
crown cells, thus creating a more evenly distributed point cloud. The decimation 
particularly helped at Hyytiälä, where the horizontal point distributions were sometimes 
uneven.  
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Table 6. Comparison of the different LiDAR-based CC estimates to the Cajanus tube 
results. All numbers are percentage points. 

 

  
FCI FCI 

1m 
CHM raw 

0.5 m 
Morph. 
method 

FCI nearest 
strip 

FCI nearest 
strip 

corrected 

Koli RMSE 3.7 3.4 6.6 4.6 3.5  

n=30 Bias -3.1 -2.1 -6.0 0.9 -2.9  

 Bias Lmin -3.9 -3.1 -7.1 -0.8 -3.6  

 Bias Lmax -2.3 -1.1 -5.0 2.6 -2.1  

 Min -7.7 -7.5 -11.7 -12.2 -7.2  

 Max 0.6 2.7 -0.9 10.8 0.5  

Hyytiälä07 RMSE 7.0 4.3 8.8 4.9 4.1 3.5 

n=22 Bias -4.6 0.1 -7.6 -1.5 -2.2 0.9 

 Bias Lmin -6.9 -1.8 -9.6 -3.6 -3.8 -0.6 

 Bias Lmax -2.2 2.1 -5.6 0.6 -0.6 2.5 

 Min -20.7 -12.9 -22.4 -8 -14.2 -9.0 

 Max 1.6 6.9 -0.4 5.8 2.7 6.5 

Hyytiälä08 1km RMSE 12.5 9.9 15.3a 9.4a 12.9 5.0 

n=18 Bias -9.2 -6.3 -13.1a 3.8a -9.4 -0.1 
an=10 Bias Lmin -13.5 -10.2 -19.1a -2.7a -13.9 -2.6 

 Bias Lmax -4.9 -2.4 -7.0a 10.3a -4.9 2.5 

 Min -28.1 -23.0 -26.6a -8.0a -29.0 -11.7 

 Max 1.6 6.1 -2.6a 23.8a 1.6 8.1 

 
Abbreviations: FCI, proportion of first and single-canopy echoes above 1.3 m; FCI 1 m, FCI 
calculated by selecting a random echo from each 1 m grid cell; CHM raw, FCI calculated by 
selecting the highest echo from each 0.5 m grid cell. 
 
 

When the highest echo was selected to create the CHMs at the typical resolution of 0.5 
m (Table 6, column CHM raw), the overestimation actually increased by several percent 
when compared to the simple FCI. If the initial CHM was processed further by filling 
empty cells and other outlier values, the overestimation of the CC increased even more. The 
CHM overestimation can probably be explained by the horizontal expansion of the crowns 
due to the relatively coarse resolution – a single-canopy echo at the edge of the 0.5 m cell 
classified the entire 0.25 m2 area as canopy.  

The morphological method can be used to create canopy maps with a considerably 
higher resolution (0.1 m) as the opening and closing operations will automatically process 
the empty cells that are left between the filled canopy cells. The advantage of the higher 
resolution is considerable as the morphological method had the smallest bias out of all of 
the methods that can be used without pulse angle data (0.9% – -3.8%). At the Koli site, the 
morphological method actually had a larger RMSE than the simple FCI index (3.7% vs. 
4.6%), and also larger minimum and maximum errors. At some of the Koli plots, the size of 
the structuring element was slightly too large, which led to a loss of detail in the canopy 
maps and thus to a larger RMSE. 
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The use of just the nearest LiDAR strip echoes instead of all of the echoes did not 
function quite as well as expected. The decrease in bias when compared to the standard FCI 
was largest with the Hyytiälä 2007 data, -2.4%. At the Koli site the bias hardly decreased at 
all, and, most interestingly, with the Hyytiälä 2008 data it actually increased slightly. This 
anomaly was mainly caused by an outlier plot that was adjacent to an open area. The pulses 
arrived at a 31° angle from the open side, penetrating under the spruce crowns which 
started at a 15 m height. At the opposite forested side of the plot, the pulses arrived at a 22° 
angle, but they had a considerably smaller likelihood of reaching the forest floor due to a 
larger amount of shadowing. This problem was emphasized by the scanner that produced a 
much higher point density near the edge of the field-of-view than at the nadir. 

The best results at the Hyytiälä site were obtained by correcting the estimates based on 
the nearest strip with a regression model (bias = -0.0253 × scan zenith angle × maximum 
height) that was fitted into the strip-wise errors with a 4.5% standard error. When the FCI 
was corrected by adding the predicted error, even the 2008 1 km LiDAR data produced 
unbiased results, and, furthermore, the 2007 RMSE decreased to 3.5%. Unfortunately, this 
model could not be tested using the Koli data that did not include pulse angles. 
 

 
3.4 Validation of nationwide canopy cover model with airborne LiDAR data 
 
The small RMSE between the Cajanus tube measurements and the airborne LiDAR data 
indicates that LiDAR data can be used as a source of validation data instead of the Cajanus 
tube. Thus, it was interesting to compare the predictions of the nationwide CC model to the 
LiDAR-derived FCI in the Matalansalo test area. The results of this test are shown in 
Figure 12. The pine model underestimated LiDAR-based FCI by 3.7% with an RMSE of 
8.2%, while for the spruce model RMSE and bias were 9.1% and 4.2%, respectively. The 
RMSE values are similar to the estimates obtained in the cross-validation (8.3% and 9.4%). 
The results of study V showed that for the ALTM 3100 (a newer version of the ALTM 
2033, used in Matalansalo), with a similar point density, the FCI typically overestimated 
CC by 1% – 3%, so the bias should actually be slightly smaller. Unfortunately, the 
Matalansalo data also lacked pulse angles, so the correction models could not be applied.  

All in all, the results indicate that the models are adequate for CC estimation, at least in 
eastern parts of Finland, where most of the modeling data originated from. Nevertheless, at 
34 out of 472 plots the model errors were larger than 15%, which should be avoided. Most 
of the plots with large errors appeared as outliers in the FCI – basal area scatterplot. The 
site types and tree heights at these plots were not particularly different, indicating that the 
reason for the errors could have been an unusual spatial arrangement of the trees.   
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Figure 12. Comparison of nationwide CC model predictions to the LiDAR-based proportion 
of canopy echoes (FCI). The dashed lines show 10% error limits. 

 
 
4 DISCUSSION 
 
 
All of the different methods presented in this study can be used for CC assessment. 
Nevertheless, it is clear that the different methods have different precisions and biases, and 
some of them are not suitable for all situations. Canopy cover estimation in situ is 
essentially a sampling problem – if the area of interest is evenly covered with vertical 
observations of the canopy presence, the results should be good. It is also very important 
that the sampling strategy used to select the observation points is unbiased. 

Vertical dot count or LIS measurements with the Cajanus tube or other instruments 
provide theoretically unbiased estimates of CC (as long as the sampling is unbiased) and 
were thus chosen for the control method. Although the determination of crown edges was 
sometimes subjective, the results of this work support those of earlier studies which found 
that dot count and LIS measurements are reliable alternatives if precise and unbiased CC 
estimates are needed (Johansson 1958, Jennings et al. 1999, Rautiainen et al. 2005). In 
particular, when compared to the CC estimated by the LIS and dot count measurements in 
study V, the errors of the LiDAR-based FCI index were notably small, indicating that the 
control values were also reasonably precise. Conversely, the attempt to measure CC based 
on four crown radius measurements per tree led to some exceptionally large outliers when 
the results were compared to the LiDAR data. Since the literature also indicates that the 
crown radius method may sometimes produce inaccurate results (Lang and Kurvits 2007, 
Ko et al. 2009), the use of dot count or LIS methods when precise CC estimates are needed 
should be preferred, unless time is a problem. These methods work in all forests, regardless 
of the crown structure, as long as vertical observations are used, the sampling is unbiased, 
and the measurement taker is given detailed instructions on how to work in unclear 
situations. Crown radius measurements for all trees in the plot are even more laborious than 
the dot count and LIS measurements, so they should only be used when the crown widths or 
in situ canopy maps are needed. 
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The good agreement between the dot count and LIS measurements also indicates that if 
LiDAR data are available, very detailed ground measurements are needed for obtaining 
results that are as good as the simple proportion of (first and single) canopy echoes, which 
can be easily derived from LiDAR data. This simple index can be used if the typical bias of 
1–5% is acceptable or if it can be corrected. The scale of the bias mainly depends on the 
scan zenith angle but also on the echo density and horizontal sampling pattern, and the 
sensor properties could also influence the results. Different methods for correcting the bias 
were tested in study V, and of these the use of scan zenith angle and normalized pulse 
heights to create models for correcting the bias provided the best results. However, the use 
of the correction models should be further tested in the future. Of the other bias correction 
methods, the point cloud decimation and morphological canopy mapping methods provided 
the best results, but in real applications it could be simpler to just estimate the scale of the 
bias and subtract it from the FCI. Carefully measured field data are certainly useful for 
validating LiDAR-based CC estimates, but these results indicate that regression calibration 
may not always be necessary. 

The results show that the LiDAR-based techniques were the only ones that were capable 
of producing CC estimates that normally differed by less than 10% from the Cajanus tube 
estimate. However, in practical inventories, LiDAR data are not always available. The 
quicker field methods and statistical modeling remain as alternatives for the laborious 
sighting tube sampling. If there are 2–10 minutes available for the CC measurement, 
measuring approximately 10–30 sample points with a narrow AOV (30°–40°) instrument, 
such as a digital camera or a spherical densiometer, should produce fairly reliable CC 
estimates. These results indicate that with small AOVs the number of sample points can be 
reduced significantly, and the overestimation should remain relatively small. A more 
difficult problem could be guaranteeing that the sampling scheme was unbiased. Systematic 
samples as such may be biased in forests with regular tree patterns, but the sampling should 
still cover the entire plot, so few other options remain. For the best possible precision, a 
tape measure or some other distance measuring device should be used to ensure that the 
sample points are where they should be, but in practice it may be that time limits exclude 
this option. 

Digital cameras, densiometers, and moosehorns with narrow AOVs should all be valid 
instruments for CC measurements. The main advantage of using a digital camera is that 
taking images is faster than calculating the grid coverage with the densiometer. The 
densiometer is simple, portable and gives the result immediately, but it is slower to use and 
the mensuration may be prone to errors. With the camera, images are saved as documents 
for later inspection and their automated analysis was reliable. In addition, the AOV to be 
used in the analysis can be set by the operator, so it is also possible to simulate dot count 
measurements with the camera. The Matlab scripts used in study IV are also freely 
available for download (Heikkinen and Korhonen 2009). Nowadays, basic point-and-shoot 
digital cameras cost even less than a spherical densiometer (less than €100), and thus price 
should not be an obstacle. One restriction is that the sun should not appear in the images 
because nearby pixels will become saturated. This could be a problem near the equator 
where the sun rises high enough to appear in the images. However, sunlit crowns in the 
images can usually be processed without problems. The problem with all AOV 
measurements are seedlings stands – if the CC is required exactly as the definition states, 
the images should actually be taken at ground level. In such places, the use of AOV 
measurements instead of the sighting tube is questionable.  
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The crown relascope measurements typically take 1 – 4 minutes, depending on the 
number of trees to be evaluated. Thus, the crown relascope could be used as an alternative 
to quick AOV measurements in forests where the canopy structure is favorable, i.e. the 
visibility is good, the crowns do not overlap frequently, and the horizontal crown shape is 
near circular. It is important to select the CBAF based on the average crown width so that a 
single measurement covers the entire plot. The crown relascope could be particularly useful 
in the FAO forest classification, as it is easy to use the CBAF = 100 and to calculate 
whether or not there are more than ten trees (10% CC) at the sample plot, provided that the 
conditions mentioned above are fulfilled.  

If the time available for CC measurements is less than a minute per plot, the remaining 
alternatives include ocular estimation and the use of regression models based on the 
available stand characteristics. This is the situation in the Finnish NFI, where the practical 
alternatives for CC estimation are modeling, the ocular method, and sometimes the crown 
relascope. The results of the ocular estimation test in study I showed that proper training of 
the observers is needed. Nevertheless, the results from the NFI training days showed that 
after detailed instructions and training, some group leaders reached a precision nearly equal 
to the LiDAR or Cajanus tube results. However, the range of RMSEs was 4% – 15%, and 
CC was commonly underestimated by up to 10%. Loetsch et al. (1973) wrote that ocular 
observers commonly underestimate CC, and it seems that their statement is still valid. 
Ocular estimation can be used as a last option if other methods cannot be used, but decent 
training and monitoring of results is essential. 

The RMSE of the nationwide CC models at the Matalansalo test site and in the cross-
validation test was approximately 8% – 9.5%, so the model is more reliable than an 
untrained ocular observer, but with decent training this situation could change. The model 
can still be used if there is no time for separate measurements, or for auxiliary information 
before an ocular estimation, or even afterwards as an alternative estimate. A possible way 
of improving the performance of this model could be the inclusion of a spatial index as a 
predictor variable, if these data were more commonly available.  

In the future, modeling data should be extended further, which would be easiest to 
accomplish by using angle-corrected LiDAR data to avoid the time-consuming Cajanus 
tube measurements. The current data set is focused on eastern Finland, so more data should 
be obtained from other parts of the country. The plots were subjectively located in order to 
maximize the diversity of the data and they also included at least a few plots from relatively 
rare forests, such as the low CC spruce stands. Still, it would be better to obtain additional 
plots with a more objective sampling scheme. A larger database would also enable the use 
of nonparametric estimation, such as nearest neighbor methods. The use of the crown radius 
approach (Gill et al. 2000) with the help of spatial structure models (e.g. Tomppo 1986) is 
one alternative that should be studied in future, and also in boreal forests, although the 
results in other parts of the world have not been very good so far (Ko et al. 2009).  

The regression models presented here are not ideal for describing CC as a function of 
stand age because the empirical data included few cases from the first years of the rotation. 
The seedling stands in the modeling data usually had a well-established tree population and 
thus the CC had already reached 20% – 50%. In a recent study (Lohila et al. 2010), some of 
the same nationwide data that were used here were used to make nonlinear curves that were 
capable of describing the development of a typical forest during the entire rotation. On the 
other hand, these models could, in some cases, produce estimates outside of the standard 
unit interval, and thus the use of the beta regression approach is safer in situations where 
just an estimate of the current CC is required. 
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In summary, the results presented here should be valid for semi-natural boreal forests as 
the data included the most common forest types and development stages encountered in 
Finland. However, a direct comparison of the results (using RMSE or R2 values, etc.) to 
other recently published studies (Fiala et al. 2006, Ko et al. 2009, Paletto and Tosi 2009) 
was not feasible as the results came from structurally different forests and the range of CC 
values may differ considerably in different types of forests. Even though the precisions of 
individual methods cannot be generalized, the sighting tube methodology as presented here 
should be applicable everywhere, and, furthermore, the AOV and crown relascope methods 
can be applied reliably if the prerequisites described above are met. However, all studies 
agreed that the different mensuration devices yielded different results, mainly because of 
different AOVs and inclusion or exclusion of within-crown gaps. It is up to the inventory 
designers to select the most appropriate method based on their needs. In many cases canopy 
closure could be a more descriptive variable than CC, for example if the light conditions 
under the canopy were the parameter of interest.  

The interest in forest canopy structure will probably continue to increase in the future. 
Canopy cover data are required for monitoring large scale forest areas, but also at local 
scales down to the individual plot level for different ecological applications. The field 
methods presented here are valid for traditional forest inventories and more ecologically 
oriented campaigns where CC is required, usually as one of several variables of interest. If 
CC is considered important, then enough time and resources should be allocated to 
guarantee an adequate sampling density.  

The plot inventories only produce a sample of the CC in the area of interest. If wall-to-
wall coverage is necessary, the use of different remote sensing methods is the only 
alternative. The availability of different remotely sensed data has increased drastically over 
the past ten years, and the price has decreased substantially. This development is likely to 
continue in the future. For instance, UAVs (unmanned aerial vehicles) suitable for small-
scale aerial photography have become commercially available and could be a good 
alternative to plot level CC estimations. Also, several upcoming satellite missions will 
provide new data sources for CC monitoring. For example, the ESA’s Sentinel 2 and the 
German hyperspectral EnMAP (Environmental Mapping and Analysis Program) missions 
will increase the availability of moderate resolution optical data, while NASA’s DESDyni 
spaceborne profiling LiDAR will provide global vegetation height measurements. Satellite 
sensors with a coarse to medium spatial resolution remain as the best alternative for 
continuous change monitoring due to their high temporal resolution, especially from the 
national to global scale. 

However, in Finland, the airborne LiDARs could be the most practical way of providing 
CC data.  The LiDARs are capable of producing accurate estimates from the plot to 
regional levels. Airborne LiDARs are already used in practical forest inventories in both 
private and state-owned forests, and the production of the LiDAR-based nationwide 
elevation model will cover the entire Finland with leaf-off LiDAR measurements over the 
next ten years. It is reasonable to assume that the need for in situ CC measurements will 
decrease as LiDAR data become commonly available. For instance, Graf et al. (2009) 
demonstrated how the LiDAR-based CC estimation was used to detect capercaillie (Tetrao 
urogallus) habitats in the Swiss Alps. However, the availability of LiDAR data will stay 
limited in many parts of the world, and its price is still higher than the price of aerial images 
or satellite data. Furthermore, field inventories are still needed to provide validation data for 
remote sensing, and in many parts of the world it might be easier to hire field workers than 
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remote sensing experts. Basic knowledge on the precision and costs of the different 
alternatives should in any case lead to better quality end products.  
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