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ABSTRACT

This thesis report attempts to improve the models for predicting forest stand structure for 
practical use, e.g. forest management planning (FMP) purposes in Finland. Comparisons were 
made between Weibull and Johnson’s SB distribution and alternative regression estimation 
methods. Data used for preliminary studies was local but the final models were based on 
representative data. Models were validated mainly in terms of bias and RMSE in the main 
stand characteristics (e.g. volume) using independent data. 

The bivariate SBB distribution model was used to mimic realistic variations in tree 
dimensions by including within-diameter-class height variation. Using the traditional method, 
diameter distribution with the expected height resulted in reduced height variation, whereas 
the alternative bivariate method utilized the error-term of the height model. The lack of models 
for FMP was covered to some extent by the models for peatland and juvenile stands. The 
validation of these models showed that the more sophisticated regression estimation methods 
provided slightly improved accuracy. 

A flexible prediction and application for stand structure consisted of seemingly unrelated 
regression models for eight stand characteristics, the parameters of three optional distributions 
and Näslund’s height curve. The cross-model covariance structure was used for linear 
prediction application, in which the expected values of the models were calibrated with the 
known stand characteristics. This provided a framework to validate the optional distributions 
and the optional set of stand characteristics. Height distribution is recommended for the earliest 
state of stands because of its continuous feature. From the mean height of about 4 m, Weibull 
dbh-frequency distribution is recommended in young stands if the input variables consist of 
arithmetic stand characteristics. In advanced stands, basal area-dbh distribution models are 
recommended. Näslund’s height curve proved useful. Some efficient transformations of stand 
characteristics are introduced, e.g. the shape index, which combined the basal area, the stem 
number and the median diameter. Shape index enabled SB model for peatland stands to detect 
large variation in stand densities. This model also demonstrated reasonable behaviour for 
stands in mineral soils.

Keywords:  stand structure, size distribution, linear prediction, height-diameter relationship, 
stand characteristics, regression estimation
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1 INTRODUCTION

1.1 Finnish forests in brief

Finland, ‘the land of the thousand lakes’, could as well be called ‘the land of millions of 
forests’. Indeed, the land area of Finland comes to 30 million hectares, of which 87% is 
classified as forestry land. Of the total forestry land, the proportion owned by about 900,000 
non-industrial private forestowners amounts to 52% and that owned by the state amounts to 
35%, while companies own 8%. The total standing volume amounts to about 2,206 million 
m3, for an average of 107 m3ha-1. However, in Southern Finland, the mean volume (132 m3ha-1) 
is almost twice as great as in northern Finland (76 m3ha-1). Nature conservation and wilderness 
areas (3.0 million hectares) are found mainly on state land in the northern part of Finland 
(Finnish ... 2009). Stands growing on drained peatlands are very important natural resources 
in Finland: about 52% of the country’s 10 million hectares of peatland has been drained for 
forestry purposes in order to increase wood production (Hökkä et al. 2002).

About half of the growing stock consists of Scots pine (Pinus sylvestris L.), while the 
proportion of Norway spruce (Picea abies (L.) Karst.) is 30% and that of broadleaf species, 
mostly birch (Betula spp.), 20% (Finnish ... 2009). Scots pine is the most common tree species 
both on drained and on pristine peatlands. It covers 77% of the total drained forested peatland 
area in Finland. At present, young and advanced seedling stands amounted to 21% of the total 
forest area of Finland. The proportion of artificial regeneration has been slightly increasing 
and is now 44% in the whole country and 55% in southern Finland, according to the latest 
national forest inventory (NFI) results. Pine has been dominant as an artificially regenerated 
species, but the proportion of spruce has been increasing gradually and surpassed that of pine 
in 2005 (ibid.). 

1.2 Stand structure

1.2.1 Definition of stand structure

The structure of the forests in general can be described in terms of the mean and sum 
characteristics of interest, as done above. A tree stand is defined as a relatively uniform 
group of forest trees that can be differentiated from the surrounding stands by its structure, 
tree species composition, and site. In practical forestry, a tree stand is closely related to a 
stand ‘compartment’, which is a management unit. Many definitions, from tree to landscape 
level, have been used for describing stand structure in research and practical forestry (see 
Sarkkola 2006, p 15–16). Throughout this study, the concept of stand structure refers to tree-
species-specific size distributions of living trees in a stand. More specific description of the 
stand structure may take into account spatial distribution and species diversity in addition to 
the variation in tree dimensions (e.g., Kuuluvainen et al. 1996, Stoyan and Penttinen 2000, 
Pommerening 2002). The size distributions can describe distribution of stem number, stand 
basal area, stand volume, etc. by diameter classes (e.g., Bailey and Dell 1973, Kilkki and 
Päivinen 1986, Loetsch et al. 1973), by height classes (e.g., Westfall et al. 2004, Maltamo et 
al. 2004), or in terms of both – by diameter and height classes as a joint bivariate distribution 
(e.g., Schreuder and Hafley 1977, Zucchini et al. 2001, Li et al. 2002). Diameter distributions 
describing stem number or basal area by diameter classes are most commonly used. The tree 
diameter is typically defined as diameter-at-breast-height (dbh).
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The structure of a forest stand in terms of its diameter distribution is of great importance. 
In practical forestry, the diameter distribution is useful for determining the stand’s stage 
of development (e.g., Cajanus 1914); in combination with a height model for estimating, 
for example, the stand’s total volume (e.g., Li et al. 2002, Mabvurira et al. 2002); and for 
assessing the quantity (e.g., Päivinen 1980, Mack and Burk 2004) and sometimes also quality 
(Kärki et al. 2000) of timber assortments. In addition, it enables prediction and simulation 
of the future yields and the target stand states for management objectives, such as cutting 
regimes (Hyink and Moser 1983, McTague and Bailey 1987, Bowling et al. 1989, Franklin et 
al. 2002, Newton et al. 2005). Furthermore, the effect of genetic improvement, management 
activities (e.g., vegetation control), or disturbances (e.g., moose browsing) on stand structure 
can be described through changes in diameter or height distribution (see Knowe et al. 1992, 
Siipilehto and Heikkilä 2004, Smith 2007, Weng et al. 2010). The diameter distribution of 
living trees is also a relevant basis for characterising stand diversity (e.g., Buongiorno et al. 
1994, Uuttera et al. 1997, Staudhammer and LeMay 2001, Pommerening 2002). 

1.2.2 Factors affecting stand structure 

Stand structure is the product of natural processes and many influencing factors such as 
geographical location, site, species-specific dynamics and management. The location 
of a stand has usually been taken into account in the models for stand development via a 
temperature sum factor (see Hynynen et al. 2002). Shade-tolerant Norway spruce dominates 
on fertile sites, whereas less fertile sites are dominated by the shade-intolerant Scots pine. 
The decreasing diameter distribution is characteristic of the natural late-successional spruce 
stands (Linder et al. 1997, Kuuluvainen et al. 1998b). Along with succession, the shape of 
the diameter distribution can also become more symmetrical because of the mortality of the 
smallest trees (Laiho et al. 1994, Linder 1998). Pine-dominated old-growth forests typically 
consist of different age and species cohorts, which form a patchy and multi-layered canopy 
structure (Kuuluvainen 2002, Lähde et al. 1994ab, Rouvinen and Kuuluvainen 2005). Thus, 
diameter distributions in natural or semi-natural old-growth forests are often bimodal or 
multimodal (e.g., Kuuluvainen et al. 1998a, Linder et al. 1997). If the different tree species are 
examined separately, the distributions seemed unimodal in most cases examined (Siipilehto 
2001b, Rouvinen and Kuuluvainen 2005; see also Merganič and Sterba 2006 concerning 
virgin forests in Slovakia). 

The great majority of the forests in Finland are commercially managed. The diameter 
distribution of a managed stand is typically less wide and more symmetrical than that of a 
natural, unmanaged stand in Finland (see Siipilehto 2001b, Siipilehto and Siitonen 2004, 
Rouvinen and Kuuluvainen 2005). In recent decades, the human impact on forests has changed 
strongly. For example, tar burning, slash-and-burn cultivation, and woodland grazing of cattle 
all had their effects until the early 1900s (Kaila 1931, Lehtonen 1998), and some of their 
effects on stand structures could still be seen in recent studies (Siitonen et al. 2000, Uotila 
et al. 2002). At first, the commercial assortments included only sawlogs, which resulted in 
the setting of cutting diameter limits. The rapid increase in activity in the pulp and paper 
industry in the ’60s (Finnish ... 2007) opened the markets to pulpwood and thus enabled 
forest management practice to turn toward even-aged forestry (Kuusela 1990). In the ’60s and 
’70s, levels of, for example, annual reforestation and drainage reached their maximum areas 
because of the government’s strong stake in funding of forestry projects (see Koskimaa 1985, 
MERA ... 1969). In the early 1950s, the area artificially regenerated annually (mostly seeded) 
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amounted to only about one fourth of that from the late 1960s to modern years. Thus, planted 
stands are still relatively young and concurrently extremely rare in mature forests. 

On pristine peatland, the stands are often sparse and have a heterogeneous age, size, and 
spatial structure (Gustavsen and Päivänen 1986, Norokorpi et al. 1997). The size distribution 
shifted slowly toward a bell-shaped diameter distribution with respect to increasing dominant 
age (Sarkkola 2006, p 39). The stocking level remains so low that self-thinning plays only a 
minor role in tree mortality. Drainage is clearly one of the most important silvicultural methods 
that have affected stand structures in Finland. After drainage, the structural inequality in the 
size distribution of a peatland stand may increase on account of the improved regeneration 
and growing conditions for the trees (Hökkä and Laine 1988, Sarkkola et al. 2003, Sarkkola 
et al. 2005). During post-drainage succession, increasing inter-tree competition results in 
decreasing stem number even if no cuttings are carried out. Thus, the size distribution changes 
because of the mortality of the smallest trees. 

In conclusion, unmanaged natural forests are few in number in Finland. In managed 
forests, the management history is totally different in existing old forests from that of the 
younger forests. In addition, according to Maltamo et al. (1997), minor differences in forest 
stand structures can be found between forest-owner groups, most probably due to differences 
in forest management. 

1.3 Modelling stand structure

1.3.1 Stand characteristics

The first stage of describing a stand is to assess its site and stand characteristics. Stand 
characteristics can be modelled, for example, as a function of stand age, location, and site 
factors by tree species. This is the base for more detailed description of stand structures. In 
order to avoid laborious measurement in the practical forest management planning (FMP) 
field work, the description of a stand is commonly simplified to visually assessed mean 
and sum characteristics. FMP as applied on private estates in Finland is in the process of 
changing (see Koivuniemi 2003, Holopainen and Hyyppä 2009, Tikkanen et al. 2010). The 
same tendency can be seen in FMP carried out for state-owned or forest-company-owned 
stands and to some extent in the NFI. Therefore, until the late ’80s, stand variables such as 
mean age, mean diameter and mean height, total stem number, and basal area were considered 
adequate to characterize the entire growing stock. Tree species were characterized by their 
proportion of the stand basal area. Today, stand characteristics are assessed by tree species, 
and they are described separately for each storey (see PATI-maastotyöohje 2004, Solmun ... 
1997, Valtakunnan ... 2009). Determining the stem number or basal area is typically optional 
in FMP field work. In practice, stem number is assessed in young stands by means of fixed-
area sample plots while basal area is assessed in advanced stands using relascope (angle-
gauge) sample plots (i.e., probability proportional to tree basal area). The guidelines for FMP 
field work are very much the same for state-owned forests (Laamanen et al. 1997) and also for 
landscape-related ecological management planning (Karvonen 2000). However, sometimes 
stem number is required additionally to basal area and basal-area-weighted variables in FMP 
for the forest-company-owned stands (Kuvioittainen ... 1998). 

Today, utilisation of satellite images and laser scanning data in Finnish FMP is under 
intensive study (e.g., Peuhkurinen et al. 2007, Närhi et al., 2008, Tomppo et al. 2008). These 
methods seems to have increased the accuracy in the number of stems (Suvanto et al. 2005, 
Uuttera et al. 2006, Packalén and Maltamo 2007, Vohland et al. 2007) when compared with 
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field work (Kangas et al. 2004). Wider utilisation of the laser scan data is leading to a new 
kind ‘precision forestry’ as described by Holopainen and Hyyppä (2009). Laser scanning has 
already been used operationally for some years now for large-area forest inventory in Norway 
(e.g. Næsset 2007, Næsset et al. 2004) and was begun in the whole of Finland in 2010 as an 
inventory system for the private forests (Tapio ... 2009).

Alternative choices related to the stand characteristics assessed may cause problems through 
the use of unequal FMP inventory data as input variables in simulators. Accordingly, a need 
for modelling individual stand characteristics or relationships between stand characteristics 
arises from the changes and alternatives in FMP or NFI practices (e.g. Nuutinen 1986, Eid 
2001, Nissinen 2002). 

1.3.2  Size distributions

Finnish simulators such as MELA (see DemoMELA, Siitonen et al. 1996), MOTTI (see 
MOTTI software, Hynynen et al. 2005), and MONSU (see MONSU, Pukkala 2004) are based 
on tree-level data. The SIMO simulator incorporates both stand-level and tree-level simulation 
options, but, in any case, distribution models are needed for calculation of assortment volumes 
(Kalliovirta 2006, Tokola et al. 2006, Holopainen et al. 2010). Consequently, the next step 
in modelling stand structure is to convert stand-level information into tree-level information 
through size distribution modelling. This means selecting the distribution function, selecting 
the scale of weighting, and selecting the distribution modelling approach. 

Many studies have carried out probability density function (pdf) comparisons empirically 
in order to find the most appropriate pdf (e.g., Hafley and Schreuder 1977, Kamziah et al. 
2000, Zhang et al. 2003, Palahi et al. 2007). Another way of comparing the flexibility of 
alternative distributions is more theoretical, by means of possible kurtosis-skewness ranges 
(e.g., Hafley and Schreuder 1977, Wang and Rennolls 2005). Skewness, or asymmetry, is 
defined as a departure from symmetry about the mean where negative values indicate a 
distribution with a long tail to the left (i.e., negatively skewed, or left-skewed) and positive 
values a long tail to the right (i.e., positively skewed or rightskewed). Kurtosis is a relative 
measure of the flatness or peakedness of a distribution; the larger the value, the more peaked 
the distribution, and vice versa: the lower the value, the flatter the distribution. In this kind of 
theoretical description of flexibility, the normal, exponential, and uniform distributions are all 
represented by a point in skewness-kurtosis space, a verification that they all have but one shape. 
The gamma, lognormal, and Weibull distributions are represented by the lines demonstrating 
their capability to assume a variety of shapes. The gamma and lognormal distributions are 
limited to shapes that have positive skewness, whereas the Weibull has the ability to describe 
both positive and negative skewness. The beta and Johnson’s SB distributions are flexible in 
covering a region in the skewness-kurtosis space. The logit logistic distribution (Tadikamalla 
and Johnson 1982) has recently been presented for forestry applications, and it seems to be 
the most flexible parametric distribution in view of the possible skewness-kurtosis variation 
(Wang and Rennolls 2005). 

In practical applications, dbh distributions are presented either unweighted with respect to 
tree frequency (i.e., dbh-frequency distribution) or weighted with respect to tree basal area 
(i.e., basal area-dbh distribution) (see Gove and Patil 1998). Weighting affects the shape of the 
distribution. For example, if we assume that the dbh-frequency distribution is symmetrical, 
the basal area-dbh distribution is skewed to the left. This skewness is more pronounced if the 
volume-dbh distribution is presented (Loetsch et al. 1973, p 44). Consequently, weighting may 
have some effect on the goodness of fit and on the predictability of the selected distribution – 
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especially in the case of decreasing dbh-frequency distributions, weighting has increased the 
predictability (see Hökkä et al. 1991, Gove 2003a). 

The great majority of the alternative distribution models in Finland are based on basal 
area-dbh distribution, which is partly a result of relascope-sampled data and partly because 
of its ability to emphasise the large and the most valuable trees (Päivinen 1980). Elsewhere, 
basal area-dbh distribution models are rarely used (see Gove and Patil 1998), even though 
they were introduced as early as 1967 by McGee and Della-Bianca and 1971 by Lenhart and 
Clutter. Frequency distributions have traditionally been used in Scandinavia (e.g., Mønnes 
1982, Tham 1988, and Holte 1993), but they are few in number and also comparatively recent 
in Finland: Sarkkola et al. (2003, 2005) presented the Weibull model and Maltamo et al. 
(2000) a Weibull- and percentile-based prediction model, and, more recently, Maltamo et al. 
(2007) compared dbh-frequency distribution with a basal area-dbh distribution model using 
Weibull. Basal-area-weighted models can be considered quite unpractical for young stands, 
because of the unweighted stand variables assessed. However, models specifically for young 
stands are almost totally absent in Finland and consist only of models for planted spruce 
stands by Valkonen (1997).

There are two main approaches for predicting the parametric diameter distribution of a 
stand by using mean and sum stand characteristics only. In the parameter prediction method, 
estimated regression models using stand characteristics as explaining variables are applied 
for prediction of the pdf of the target stand (e.g., Rennolls and Rollinson 1985, Robinson 
2004). The alternative approach is the parameter recovery method, in which the relationships 
between stand variables (moments or percentiles) and distribution parameters are solved from 
the system of equations (e.g., Bailey and Dell 1973, Burk and Newberry 1984, Lindsay et al. 
1996). 

Most of the distribution models in Finland are based on straightforward parameter 
prediction. Such models include the beta distribution (e.g., Päivinen 1980, Siipilehto 1988, 
Maltamo et al. 1995) and the Weibull distribution (e.g., Kilkki and Päivinen 1986, Mykkänen 
1986, Kilkki et al. 1989, Maltamo et al. 1995, Maltamo 1997). There are few parameter 
recovery models in Finland. Percentile-based recovery models have incorporated the effect of 
moose browsing (Siipilehto and Heikkilä 2005) or retained trees and stand edges on the height 
distribution for sapling stands (Valkonen et al. 2002, Siipilehto 2006a, Ruuska et al. 2008). 
Apart from older studies by Cajanus (1914) and Ilvessalo (1920), moment-based recovery 
models are not found in Finland. 

It needs to be mentioned that some applicable methods do not involve parametric 
distribution functions. Such methods are percentile-based distribution (e.g., Borders et al. 
1987, Kangas and Maltamo 2000b), k-nearest neighbour (k-NN), or k-most-similar neighbour 
(k-MSN) (e.g., Mouer and Stage 1995, Haara et al. 1997, Maltamo and Kangas 1998). 
Recently, the k-NN method has been studied actively in relation to remote sensing techniques 
(e.g., Peuhkurinen et al. 2008, Holopainen et al. 2009, Järnstedt 2010). Kernel smoothing has 
been used too, but it is not suitable for prediction purposes (e.g., Droessler and Burk 1987, 
Uuttera et al. 1996, Maltamo et al. 1997, Koivuniemi 2003).

1.3.3 Bivariate distribution of tree diameters and heights

Going one step further in the modelling of tree-level information means incorporating the 
within-dbh-class height variation into the model. The more sophisticated the tree-specific 
growth and survival models are (e.g., in terms of competition indices), the more detailed 
and reasonable the predicted stand structure should be (Biging and Doppertin 1992, Zhang 
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et al. 1997). The social status of a tree depends not only on its relative diameter but also on 
its relative height in the stand. These features are reflected in a tree’s further development 
by means of tree growth and mortality. One practical motivation is that knowledge of the 
between- and within-diameter-class height variations increases the possibilities for imitating 
different types of thinning (Hafley and Buford 1985) whereas the typical motivation is simply 
the ability to provide a more realistic picture of the stand structure (e.g., Tewari and Gadow 
1999). Stand structure as a joint distribution of tree diameters and heights can be described 
by means of bivariate pdf. Johnson’s SBB distribution has been used for this purpose in a 
number of studies (e.g., Hafley and Schreuder 1977, Hafley and Buford 1985, Siipilehto 
1996, Tewari and Gadow 1999). No other bivariate generalisation of the alternative univariate 
parametric distributions has been able to provide such reasonable marginal distributions, joint 
bivariate distribution, and diameter–height relationship in closed form (Schreuder and Hafley 
1977, Wang and Rennolls 2007). However, using alternative copulas (i.e., methods that 
couple bivariate distribution function with their one-dimensional marginal distributions and 
dependence structure), Wang and Rennolls (2007) presented satisfactory bivariate extension 
with the logit logistic, beta, and SB distribution as marginal distributions, while Li et al. 
(2002) presented that for gamma distribution. Zucchini et al. (2001) presented a bivariate 
model based on the mixture of two bivariate normal distributions. Thus, the height–dbh 
relationship was described by two straight lines, with different slopes. The early Finnish 
application by Kilkki and Siitonen (1975) presented a bivariate model based on the beta 
function as diameter distribution and conditional height distributions together with Näslund’s 
height curve describing expected height. The bivariate model may have practical application 
such as predicting the missing heights with random variation for tally trees or in general for 
generation of model-based data, as in the study by Kilkki and Siitonen (ibid.).

1.4 Objectives

The common objective of these studies is to develop and improve parameter prediction 
models for predicting size distributions of Finnish forest stands for practical use, such as 
forest management planning purposes. Naturally, models should include all of the main tree 
species, but in this thesis, some models are introduced for Scots pine only. More detailed 
objectives are more or less methodological or practical. 

Comparing and ranking of the alternative regression estimation methods (Papers 1. III 
and IV)

Specifying efficient transformations in order to linearize the dependence and to find 2. 
close correlation between modelled parameters and explaining stand characteristics 
(Papers I, III, and IV)

Developing alternative methods to mimic realistic variation in tree dimensions by 3. 
including within-dbh-class height variation (Paper II)

Introducing a family of simultaneous models for stand characteristics and parameters 4. 
of the optional dbh distributions and a height curve including a cross-model covariance 
structure for linear prediction application (Paper V)
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Covering the lack of models to some extent by developing models for peatland (Paper 5. 
III) and juvenile stands (Paper IV) 

Developing simple models for the relationship between tree diameter and height for 6. 
forest management planning purposes (Papers I, II, IV, and V)

Ensuring the applicability of the alternative models, requiring alternative input data 7. 
(Paper V) 

Comparing the additional stand characteristics in terms of their ability to improve the 8. 
models’ performance (Paper V)

Developing a framework for flexible validation of the optional input 9. variables and 
optional models in order to allow giving recommendations for their practical use 
(summary)

When I searched for additional stand characteristics in order to improve the accuracy of the 
predicted distributions, I paid special attention to the additional stem number (in advanced 
stands) as well as to the dominant tree characteristics. This means that the responses to these 
variables were checked with the optional distribution models by means of some examples in 
this summary. In addition, the effects of the additional knowledge on these stand characteristics 
were checked in terms of bias and RMSE in the main stand characteristics through application 
of the validation data. Also, the optional models for height–diameter relationships were 
validated with an example and via validation data. I presume that this kind of validation in this 
summary offers me the keys to be able to recommend a certain model for certain conditions.
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2 MATERIAL

2.1 Stand plots

When one focuses on tree size distribution, the number of observations within a stand is 
essential for reliable estimation of the distribution function. Shiver (1988) stated that, 
regardless of the estimation method, a sample size of approximately 50 trees is required for 
reproducing marginal distributions in classes with less than 10% error. Considerable reduction 
in variance, bias, and RMSE has been found in the Weibull parameters when sample size 
changed from 30 to 50, and the further reduction thereafter had a decreasing rate (ibid.). 
In study of the bivariate structure of tree diameters and heights, quite likely twice as many 
observations are needed. For example, sample sizes of greater than 100 trees have been used 
by Schreuder and Hafley (1977) and Wang and Rennols (2007). Modelling the development 
of stand characteristics does not necessarily require as large samples in terms of measured 
trees; e.g., Koivuniemi (2003) recommends 30 trees, but, more obviously, a representative 
sample is needed. Quite likely, the most suitable existing data for simultaneous modelling of 
stand characteristics and diameter distributions in mineral soils were TINKA and INKA data 
sets, for young and advanced stands, respectively (see Gustavsen et al. 1988).

Each TINKA and INKA sample consisted of a cluster of three permanent, objectively 
located circular plots (300–2,500 m2) within a stand. The whole cluster represented a stand, 
in order to yield enough observations for modelling the distributions and stand characteristics 
in Papers IV and V. The re-measurements were carried out twice, five and 10 years after 
establishment. Typically, subsamples of INKA and TINKA data were used in this thesis. 
The test data applied in Papers I and II were selected from the second measurement round of 
INKA, either having H

dom
 greater than or equal to 10 m or restricted to Scots pine-dominated 

stands, as for Paper III. In the selection of the modelling data for Papers IV and V, the 
main criterion was domination by Scots pine, but each measurement round was included 
(see Figure 1 and Table 1). In addition, in Paper V, a mean diameter greater than 1.5 cm was 
required for avoiding the anomalies in stand characteristics resulting from the low proportion 
of trees above breast height in stands in the youngest state.

The data from pine–birch and spruce–birch mixtures (Mielikäinen 1980, 1985) were based 
on temporal sample plots, originally established for study of the effect of birch admixture on 
the growth and yield of the stands. The representativeness of the data was questionable, because 
of the location of the stands in the south-eastern part of Finland (see Figure 1). In addition, the 
sample plots in conifer–birch mixtures were placed subjectively within the stands to represent 
a conifer-dominated and a birch-dominated plot in addition to a plot with a birch admixture 
of about 50%. The whole cluster represented a stand, in order to yield enough observations 
for fitting the univariate and bivariate distributions in Papers I and II, respectively. Combining 
the plots had the disadvantage of diminishing the variation in the proportion of the birch 
admixture (30–65%). The main stand variables are presented in Table 1 in Paper I and Paper 
II. These data sets have been described in detail by Mielikäinen (1980, 1985).

The drained peatland stand data set (see Paper III) was based on permanent sample plots, 
originally established to study the effect of drainage and forest management. The measurement 
period varied, but the re-measurements were typically carried out with either five- or 10-
year intervals. Some of the study plots were followed for about 80 years since drainage. The 
advantages of the data were in the large variation in the successional stage in terms of years 
since drainage (see Table 1), resulting in a wide range in stand characteristics as well as in 
the shape of the diameter distributions. The data covered all Scots pine-dominated peatland 
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site types (see Table 1), and the 14 study areas covered roughly the whole of Finland (see 
Figure 1). The sample plots used in this study have been subjectively selected from the larger 
available data set. The chosen Scots pine-dominated stands on drained peatlands had long 
developmental series, varying stand density and site fertility. For details of the selection, see 
the paper by Sarkkola et al. (2005). The main stand variables are presented in Table 1 in Paper 
III.

Quite typically, data have been randomly divided into two groups, one for modelling and 
the other for testing (e.g., Cao 2004). In Paper V, 25% of the data were randomly selected for 
model validation. I preferred using totally independent data sets for modelling and testing if 
such data were available. Consequently, the modelling work utilizes all data. The capability 
of the model for prediction is then critically tested with data that are not generated in the 
same way as the modelling data (see Papers I–IV). This procedure will more likely reveal the 
critical cases when models are used for predicting new stands. Test data may include extreme 
treatments such as a continuum from heavy thinnings to unthinned stands (Paper III) or new 
kinds of cleaning practices (Paper IV). If the model is intended for practical use, their critical 
testing is a great benefit. An excellent example of this critical testing is the percentile-based 
distribution models by Kangas and Maltamo (2000b), which were tested with a large number 
of different, independent data sets (Kangas and Maltamo 2000a). 

An additional test data set (HARKO) for validation of models in Paper III consisted of 52 
Scots pine-dominated, permanent sample plots on drained peatlands in 14 distinct peatland 
areas in central and northern Finland (see Figure 1). The HARKO data covered the same 
peatland site types as the modelling data (see Table 1). However, these stands were mainly 
found in different geographical and climatic regions than the modelling peatland data (see 
Figure 1). In contrast to the modelling data, the HARKO data included a relatively broad 
range of thinning intensities. In addition to the unthinned controls, relatively heavy thinnings 
were included. Thinning removal was about 80% of the total basal area, at its greatest. Thus, 
said data provided important additional information about the validity of the models. For more 
details, see Table 2 in Paper III.

Two additional test data sets were included, to validate the models for juvenile Scots pine 
stands in Paper IV. Both data sets were local and represented mineral soil sites of Myrtillus 
type (MT) (see Table 1). The first test data set (‘Establishment’) was originally used for 
studying the establishment of pine stands immediately after planting on harrowed soil. The 
second test data set (‘Cleaning’), in Paper IV, was originally used for studying the effect of 
cleaning treatments: 1) no cleaning, 2) point cleaning of broadleafs within a one-metre radius 
of crop-tree pines, 3) total cleaning of all broadleafs, and 4) topping of competing broadleafs 
(cutting the stem at a height of 1.3 m). For more details, see Table 2 in Paper IV.

2.2 Measurements

In this thesis, the interesting random variables were the tree dimensions, dbh, and height – 
and indirectly also tree volume. In the mixed conifer–birch data sets in Papers I and II, all of 
the roughly 120 trees per stand plot were measured for tree dbh and height. In the INKA and 
TINKA data sets, the total number of trees tallied was about 100–120 per stand (i.e., in the 
cluster of three sample plots). In the TINKA data set, originally established in sapling stands, 
all crop trees were measured for tree species, dbh (if h > 1.3 m) and height. However, in the 
INKA data set, a smaller radius (one third of the total area) was used for selection of sample 
trees, which were measured for tree height (and other more detailed measurements). Because 
the dbh distribution model and height–dbh relationship was modelled simultaneously with 
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stand characteristics for Paper V, the need for a sufficient sample was fulfilled by combining 
the cluster of three plots to represent a stand. In addition, for effective utilisation of the data, 
the whole tally tree data set was used and the missing heights were predicted from the fitted 
Näslund’s height curve, including the random variation in the validation data set (see Paper 
V). For more details on the TINKA and INKA data sets, see Table 1 of Papers IV and V, 
respectively, and the work of Gustavsen et al. (1988). In Paper III, the only random variable 
studied was tree dbh, which was measured from all the trees. 

Figure 1. Location of the modelling and test data sets: pine–birch (∆) and spruce–birch (▲) mixtures in Papers I 
and II, pine-dominated drained peatland areas for modelling (●) and HARKO data for testing (○) in Paper III, pine-
dominated TINKA data for modelling (■) and local data sets for testing (□) in Paper IV, and pine-dominated INKA 
data for modelling and testing in Paper V (♦) in addition to TINKA (■) data.
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Age Mixed 
pine–birch

Mixed 
spruce–birch

Peatland(a TINKA INKA HARKO Cleaning Estab.

<20 143 450 22 21 27 81
20–39 16 9 180 188 189 259
40–59 30 36 210 6 206 138
60–79 43 10 90 1 199 113
80–99 2 5 36 172
100–119 105
>120 62
Site
OMaT 2 1
OMT 10 43 8
MT 58 15 11 33 128 32 5 27
VT 23 33 112 284 20
CT 21(b 33 55 4
ClT 4
a) Years since drainage.
b) The site type was actually DsT (i.e. dwarf-shrub site type).

Table 1. The number of observations (stand × measurement occasions) in age classes and the distribution of site 
types for the stands in the different data sources.
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3 METHODS

3.1 Distribution functions 

3.1.1 Weibull distribution

The Weibull distribution has been widely used to describe and predict diameter distributions. 
Its advantages include simplicity of mathematical derivation, the small number of parameters 
to be estimated, the closed-form cumulative function, and its flexibility in description of 
different shapes of unimodal distributions (Bailey and Dell 1973). The three-parameter 
Weibull probability density function (f) is as follows:

  (1)

where x is the random variable, the observed diameter or height in a stand plot, and a, b, and 
c are the location, scale, and shape parameters of the Weibull function, respectively. In the 
two-parameter Weibull function, a is fixed at 0 (see Papers I, IV, and V). Note that a negative 
exponential distribution results when shape parameter c is given the value of 1. The Weibull 
distribution is skewed to the right when c < 3.6, symmetrical with a value of 3.6, and left-
skewed when c > 3.6. The cumulative Weibull function has a closed-form expression, as: 

  (2)

The Weibull function has some convenient features. The cumulative function helps, for 
example, when one is sampling trees from the Weibull distribution. Probabilities can be 
produced easily without the need for numerical integration. According to size-biased theory, 
Gove and Patil (1998) showed that weighting the initial two-parameter Weibull frequency 
distribution with tree basal area leads to a standard gamma distribution with parameter k = 
(1+2/c) of gamma function Γ(k). Correspondingly, in the case of returning the initial basal 
area-dbh distribution to represent frequency distribution yields a gamma distribution with 
parameter k = (1–2/c).

3.1.2 Johnson’s SB distribution

Johnson’s SB distribution (Equation 3) is based on a transformation (Equation 4) to standard 
normality (Johnson 1949b) as follows:

  (3)

and

  (4)

where γ and δ are the shape parameters, ξ and λ are the location and range parameters, and d 
is the tree diameter observed in a stand plot. In the three-parameter SB function, location ξ is 
fixed at 0. Quite extreme shapes of SB distribution exist with a low value of shape parameter 
δ (ibid.). Value δ = 1/√2 results in a flat, almost uniform distribution. Parameter δ values 
close to 1 represent almost decreasing dbh distributions, if γ is simultaneously close to 1. One 
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interesting property is that the SB distributions have a bimodal shape if δ is given a value less 
than or equal to 0.5. This property was used in exclusion of bimodal distribution from the 
modelling data (see Papers I–III). For the work described throughout this thesis, we applied a 
three-parameter SB function in which the location (minimum) was set to 0 (see also Kamziah 
et al. 1999).

3.1.3 Bivariate SBB distribution

The bivariate Johnson’s SBB function (see Equation 5) is based on the bivariate normal 
distribution (Johnson 1949a). In the SBB, both marginal distributions follow a univariate SB 
distribution. The original variables, diameters, and heights were transformed into standard 
normal variates by means of equations 6 and 7.

  (5)

and 

  (6)

  (7)

where subscripts d and h denote distribution of diameters and heights, respectively, and ρ is 
the correlation coefficient between z

d
 and z

h
. The SBB distribution was applied as a basal-area-

weighted distribution (see Paper II). 

3.2 The relationship between tree diameter and height 

One of the properties of interest is the regression relationship between the tree diameter and 
height obtained from the bivariate SBB distribution. The usual mean regression is complicated, 
but the median regression takes a simpler form (Johnson 1949a, Schreuder and Hafley 
1977, Paper II: Equation 7). The regression curve can have various forms, depending on the 
relationship between the two parameters, φ and θ (Johnson 1949a, Paper II: Figure 1). The 
typical sigmoid form of the height curve is obtained if both parameters, φ and θ, are greater 
than 1. To avoid unreasonable height curves, Schreuder and Hafley (1977) recommended 
constraining φ to be greater than or equal to 1 in fitting of the distribution. Both unconstrained 
and constrained solutions for SBB parameters were studied in Paper II. The conditional 
height distribution for a given dbh also follows SB distribution (ibid.), but the shape of the 
conditional height distribution changes with the changing diameter (see Siipilehto 1996).
 
The Näslund’s (1936) height curve (Equation 8) was fitted in the linearized form (Equation 
9) in Papers I, II, and V.

  (8)

  (9)
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where β
0
 and β

1
 α are the parameters of the model, power α = 2 for pine and birch, α = 3 for 

spruce; and εz is the random error of the linearized model. In Paper II, we were interested in 
the height distribution conditional to known dbh. One approach was based on Equation 9 and 
its residual variation, which was assumed to be homogenous and  normally distributed (see 
Näslund 1936, p. 52). The derivation of the formula for the random variation in the initial 
scale of tree diameters and heights is detailed in Paper II: equations 10–12.

In juvenile stands (addressed in Paper IV), one goal was to construct a rather simple and 
flexible model for the tree dbh from the known tree height and stand characteristics. Different 
candidate formulations were examined, based on, for example, relative tree size as presented 
by Nishizono et al. (2005). We selected the multiplicative model as a basis (see Fahlvik and 
Nyströn 2004). The model was fitted in linearized form with logarithmic transformation as:

  (10)

where b
0
 is a constant, β

i
 is the ith coefficient for the ith independent variable X

i
, and ε is the 

random component. The error term was divided into stand-level, measurement-occasion-level, 
and tree-level random components when the mixed-effect model was estimated according to 
the MIXED procedure and REML estimation in SAS (see Paper IV).

3.3 Approaches to modelling

3.3.1 Parameter recovery

The parameter recovery method (PRM) is briefly discussed here because some of its features 
are commonly utilized also in parameter prediction methods. In PRM, the relationships 
between stand variables and distribution parameters are derived in a closed form and the 
parameters estimated for the target stand are solved for on the basis of the resulting system 
of equations. PRM is possible only for as many parameters as there are known distribution-
related stand variables. Furthermore, only stand variables that are mathematically related to 
the diameter distribution can be used. 

For the two-parameter Weibull function, two percentiles with a known value of the random 
variable and two unknown parameters can be solved for with the system of equations in closed 
form for parameters b and c (e.g., Bailey and Dell 1973). Dubey (1967) showed that the 
most efficient and asymptotically normal percentile estimators are the 24th and 93rd when 
both of the parameters, b and c of the Weibull function, are unknown. Gobakken and Næsset 
(2004, 2005) and Siipilehto (2006a) applied these in their percentile-based recovery model. 
Sometimes the 50th percentile has been used, because median could be considered a known 
variable (e.g., Siipilehto and Heikkilä 2005 for the Weibull; see Newberry and Burk 1985, 
Knoebel and Burkhart 1991 for the SB distribution).

Moment-based parameter recovery is commonly based on the first-order arithmetic mean 
and the second-order quadratic mean diameter (D

q
), the latter having direct relation to stem 

number (N) and basal area (G) as shown in Equation 11:

  (11)

where k = [π/(2 · 100)2] (see, for example, Gove and Patil, 1998). In the case of the three-
parameter Weibull function, the location parameter (a – that is, the minimum) is typically 
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predetermined. The systems of two equations for the parameters of the dbh distribution can be 
written as follows (e.g., Cao 2004):

  (12)

  (13)

where Γ
i
 = Γ(1+i/c), Γ(·) is the complete gamma function and a is a predetermined location 

parameter. Naturally, in the case of the two-parameter model, the terms including parameter 
a are eliminated.

If all three parameters of the Weibull function are recovered, the model incorporates mean, 
variance, and skewness of dbh distribution (see Burk and Newberry 1984, Lindsay et al. 1996). 
In the prediction application, the selected percentiles (e.g., 50th and 93rd) or moments such as 
D and D

q
 (or N and G instead of D

q
) may be known, but in the case of a pure three-parameter 

recovery method, variance and skewness have to be predicted because they do not belong to 
standard stand characteristics. Moment-based recovery seems useful for diameter distribution, 
but in the case of height distribution, the second-order height characteristics have no direct 
relation to standard stand characteristics, such as what Equation 11 shows for diameters. 

3.3.2 Linear regression estimation for parameter prediction

In the parameter prediction method (PPM), a priori estimated regression models are applied 
for prediction of the pdf of the target stand. To model size distributions, distributions are 
typically first fitted to data, and  the estimates obtained, treated as true values for the stand, 
are then modelled against stand variables. All of the distributions in this study were estimated 
with the method of maximum likelihood (ML). The basal-area-based distributions in line 
with the Weibull, SB, and SBB functions were estimated using the ML method represented 
by Bailey and Dell (1973), Johnson (1949a), and Schreuder and Hafley (1977) but, instead of 
frequency distribution, with basal area weighting applied (Paper I: Equations 3 and 8, Paper 
II: Equation 3). The dbh-frequency Weibull distributions were estimated using PROC NLIN 
in SAS, with modification of the code that Cao (2004) provided in the appendix.

If the errors are independent and have equal variances, the efficient estimator of coefficients 
is the Ordinary Least Squares (OLS) estimator. Allowing correlation between observations, 
the efficient estimator is the Generalized Least Squares (GLS) estimator. A multivariate model 
is a set of single regression models that are estimated from the same data. Such a situation 
is common when several parameters have to be modelled according to the PPM approach 
(e.g., Robinson 2004). Zellner (1962) showed that an OLS estimator would be efficient if 
the residuals of the separate models were not correlated and the residual variances of the 
models were equal. Furthermore, OLS is efficient also if the design matrices are the same 
across models even though residuals are correlated. However, in other cases, the seemingly 
unrelated regression (SUR) approach can be utilized such that the models are first estimated 
with separate OLS fits and then re-estimated by GLS. 

OLS assumptions can be violated as a result of the hierarchy of the data, meaning that 
each observation belongs to a class of observations, several observations are available 
from a single class, and the modelling data represent only a random sample of classes of 
the population. A recommended approach for these cases is mixed-effects modelling (Laird 
and Ware 1982) wherein the error variance is divided into between-class and within-class 
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components (McCulloch and Searle 2000, Diggle et al. 2002). On account of correlations 
between observations achieved by hierarchy, the fixed parameters should be estimated by 
means of GLS instead of OLS (Gregoire et al. 1995, McCulloch and Searle 2000). In repeated 
measurement, using longitudinal data with several responses, an efficient estimation method 
is able to take into account both the hierarchy (autocorrelation) of the data and the correlations 
between models. A multivariate mixed-effects model (or hierarchical multiresponse model), 
combining the mixed-effects modelling and SUR approaches, is the most appropriate 
(Goldstein 1995). A model of this kind can be treated as a special case of hierarchical (mixed) 
model, where an additional level of hierarchy is added to the model for longitudinal data 
(Snijders and Bosker 1999) and the implied assumptions about between-models covariances 
are parameterized in the covariance matrix of the observations. 

In a generalized linear modelling (GLM) approach, the fitting of the Weibull distribution 
and estimation of the prediction models for the parameters is done in one stage from the 
treewise data (Cao 2004). In this GLM, instead of minimising the sum of squares of the 
error with respect to parameter b and c, the goal is to maximize the total log-likelihood of 
the Weibull function (ibid.; see also Paper IV: equations 5–7). In the hybrid method further 
developed with respect to the GLM approach, parameter b in the likelihood function is replaced 
with the moment estimator (see Equation 12) while c is substituted for with the prediction 
equation (see Paper IV). Thus, parameter c is estimated conditionally to the moment-based  
recovered parameter b, the goal therefore being to maximize the total log-likelihood of the 
Weibull function conditional to an equal mean from the sample and from the predicted Weibull 
distribution.

3.3.3 Predictors of the parameters

When it comes to regression modelling, one pays special attention to finding the most appropriate 
formulation of the prediction function. This means that many kinds of transformations may 
be used in order to find unbiased behaviour across all the variation in the predictor variables. 
When the common FMP (SOLMU) data are available, the variation in the shape of the dbh 
distribution within one particular site, stand age, fixed basal area, and median diameter can 
be projected only by the variation in the median height. Median height can be included as an 
explaining variable (Päivinen 1980) or expressed as a form (slenderness) of the median tree 
(F = h

gM
/d

gM
). The behaviour of the SB model with respect to the slenderness of the median 

tree was shown for pine and spruce (see Paper I: Figure 3). 
The transformation named ‘shape index’ (Equation 14) was introduced in Paper I and 

utilized in Papers II and III. 

  (14)

where g
M
 = (π/4)(d

gM
/100)2. The idea was to compare observed basal area with the ‘calculated 

basal area’ (i.e., g
M
 N) because I presumed that the ratio between them has to be connected 

with the shape of the dbh distribution. The shape index was calculated by tree species. Note 
that the shape index can be determined also as a squared proportion of the quadratic mean (D

q
) 

and basal-area-median diameter (D
q
2 /d

gM
2). Typically, this proportion is less than 1, which 

means that d
gM

 is greater than D
q.
 (see Paper III: Figure 1). The behaviour of the shape index 

was studied with varying dbh-frequency and corresponding basal area-dbh distributions used 
(Paper I: Figure 1). 
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Also, the derived transformation used for predicting parameters of the height distribution 
is based on the ratio of two different mean characteristics. Much of the variation in the 
Weibull parameter c could be characterized in a linearized form by means of transformation 
1/ln(H

dom
/H) (Paper IV: Figure 1). Again, the above transformation was not just a ‘trial and 

error’ finding; by contrast, I derived it from the percentile estimator by Dubey (1967) (see 
Paper IV).

3.3.4 Useful explicit solutions

As Cao (2004) and Fonseca et al. (2009) noted, the approach applied does not need to be 
pure; it can be a combination of several methods. Typically this means that a moment (mean) 
or percentile (median) is utilized to solve for a parameter such that the predicted distribution 
produces it correctly. In Finland, numerous Weibull applications characterising basal area-
dbh distributions have applied the known basal-area-median diameter (d

gM
) this way (e.g., 

Kilkki et al. 1989, Maltamo et al. 1995, Maltamo 1997). If two out of three parameters were 
predicted, the third parameter was solved using one of the following equations: 

  (15)

  (16)

  (17)

Similarly, d
gM

 can be set for the median of the predicted basal area-dbh SB distribution. As 
the values of parameter ξ and median d

gM
 are known and the values of δ and λ are predicted, 

the parameter γ is solved for by means of the formula below:

  (18)

Paper IV specified an option for a two-parameter Weibull function, where parameter c was 
predicted and b was recovered from a moment, mean height (H). Thus, Equation 12 was used 
for scale parameter b by substitution of mean diameter D with mean height H. In addition, 
Equation 17 was used in Paper I and Equation 18 was used in Papers I–III in order to achieve 
compatibility in the median dbh.

3.3.5 An alternative modelling approach using BLUP 

Unlike in the regression modelling, we don’t have to fix beforehand which variables are used 
in application of the linear prediction theory (see Lappi 1993). Linear prediction is based on 
random variables. The error terms of statistical models are random variables. The cross-model 
error variance–covariance matrix is valuable when one is calibrating the expected value (µ

1
) 

by means of linear prediction theory. In the notation of Lappi (1991, 1993), the best linear 
unbiased predictor (BLUP) for variable x

1
 is:

  (19)

where x
1
 is a scalar of dependent unknown variable and x

2
 is a vector of known stand variables, 

σ
12

 is a row vector including the covariances between unknown dependent and known 
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variables, and Σ
22

 is the variance–covariance matrix between known variables. The variance 
of the prediction error after calibration of dependent variable x

1
 is:

  (20)

where σ
11

 is a scalar of the initial variance of the residual error of the dependent variable 
and σ

12
’ is a transpose of the row vector σ

12
. In the case of logarithmic transformation in the 

dependent variable, the bias correction term sε
2/2, and for inverse transformation (1/c) the bias 

correction term sε
2/x

1
2, had to be added to the intercept (e.g., Lappi 1993). The variance (20) 

was recalculated whenever the calibrating variable for prediction (19) was changing. 
The best linear unbiased predictor approach has much in common with linear regression 

estimation. However, key differences appear. The most important difference is that each of 
the variables in the set of BLUP models can be predicted/calibrated with any combination 
of remaining variables in the set of models as far as they are known and, thus, the residual 
between known and expected value can be calculated (ibid., p. 77). This feature was utilized 
in Paper V and in the summary in validation of the models presented in this thesis.

In summary, six alternative regression estimation methods were applied in prediction of 
stand and distribution characteristics. The regression approaches were as follows:

Linear model estimated by ordinary least squares (1) I–III)

Linear mixed-effects model with random intercept (2) III, IV)

Multivariate linear model estimated according to the seemingly unrelated regression 3) 
approach (III, V)

Multivariate mixed model estimated as a mixed-effects model with the additional 4) 
level of hierarchy to allow simultaneous estimation (III, IV)

Generalized linear model estimated by maximising the total log-likelihood (5) IV)

A hybrid method, wherein the generalized linear model was estimated by maximising 6) 
the total log-likelihood conditional to compatibility in the mean achieved by moment-
based recovery (IV)

3.4 Model evaluation

The estimates generated from  model application for the stem number, ‘volume’ (Σd3), and 
‘value’ (Σd4) were compared with the values derived from the original dbh measurements (see 
Paper III). The advantage of using Σd3 and Σd4 in dbh distribution validation  is that they do 
not require height information, while they still provide reasonable estimates of the accuracy 
in the volume and value of the growing stock, respectively (see Kilkki and Päivinen 1986, 
Maltamo et al. 1995). Thus, the outcomes are based completely on observed or predicted 
dbh distributions. However, height–diameter relationships were also modelled and examined 
in Papers I, II, IV, and V. In those Papers and in the summary, stand volume and timber 
assortments were calculated according to models for individual tree volume and taper curve 
as a function of known tree dbh and height (Laasasenaho 1982). The accuracies of the models 
constructed were validated in terms of bias (21), RMSE (22), and precision (23) in the 
generated stand characteristics (e.g., stem number, basal area, dominant diameter and height, 
volume of total growing stock, timber assortments, and waste wood fraction). Relative bias 
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and RMSE were calculated by dividing RMSE by the mean value of the observed Y
i
,
 
and they 

were expressed as percentages. The precision describes error variation excluding the effect of 
bias (see Papers I–III). A Kolmogorov-Smirnov (KS) goodness-of-fit test at alpha 0.1 level 
was used for validating size distribution models (see Papers II–IV). The KS test is based 
on the greatest absolute difference – i.e., the ‘supremum’ – between observed and predicted 
distributions. The error index by Reynolds et al. (1998) was also applied for ranking the 
models with respect to the errors in the predicted frequencies in height classes in addition to 
the KS test (Paper IV: Equation 12).

  (21)

  (22)

  (23)

where Y
i
 is the observed and  is the predicted stand characteristic, and e

i
 is the relative 

prediction error (%) in stand i.

In the summary, the alternative height models were validated in terms of bias and RMSE in 
H and H

dom
. In this validation, tree diameters were sampled from dbh-frequency distribution 

for young stands and from basal area-dbh distribution for advanced stands using the BLUP 
models (Paper V) for the Weibull parameters. Predictions were based on the common FMP 
stand characteristics. The Näslund’s curve according to the BLUP model in Paper V was 
compared with Näslund’s model presented in Paper I. The former applied N, D, and H in young 
stands and G, d

gM
, and h

gM
 in advanced stands for the calibration of Näslund’s parameters, 

respectively. The latter, instead, applied N, D, and H for calibrating d
gM

 and h
gM

 in young 
stands in order to predict the Näslund’s curve from them, whereas d

gM
 and h

gM
 were known and 

used as such in advanced stands. In addition, height models by Veltheim (1987) and Mehtätalo 
(2005) were examined simultaneously, but it needs to be mentioned that these two models 
did not have any stand-level height characteristics as an explaining variable. Furthermore, the 
correct form of the height curve means unbiased behaviour with respect to relative tree size. 
Therefore, the biases in tree heights were presented with respect to relative diameter (d/D) by 
means of alternative models for diameter–height relationship.

For concluding validation, the accuracy levels of the most promising models were 
compared from the randomly selected test material of Paper V. Here I focused on only a few 
combinations of input variables, regarded as the most relevant ones. Accordingly, the FMP 
(SOLMU) data set was the basis and the arithmetic variables (N, D, and H) were used for 
young stands (H ≤ 9 m; 249 observations) and basal-area-based variables (G, d

gM
, and h

gM
) 

for advanced stands (H > 9 m; 280 observations). The effect of the additional knowledge 
of N, D

dom
, and H

dom
 on the generated stand characteristics was tested. When calculating 

the volumes for the model validation, the diameter distribution model was combined with 
Näslund’s height model from Paper V. The hybrid height distribution model (GLM+M) in 
combination with the dbh prediction model from Paper IV was checked as an option for 
young stands. However, distribution models in Paper I were excluded from this evaluation 
because of the unrepresentative data. Furthermore, the SB distribution models in Paper I have 
been tested widely with alternative models in Maltamo et al. (2002).
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4 RESULTS 

4.1 BLUP models for stand characteristics

In total, eight stand characteristics (G, N, D, d
gM

, D
dom

, H, h
gM

, and H
dom

) were simultaneously 
modelled with the SUR method (Paper V). Stand age and temperature sum were the driving 
variables of the models. Site types by Cajander (1925) were used as dummy variables to 
estimate the differences from the average sub-xeric Vaccinium site type (VT) for Scots pine. 
Site fertility had considerable effect, not only on mean characteristics but also on basal 
area. The effect of stoniness and paludification was significant and evidently stronger in the 
arithmetic means than in basalareaweighted means or dominant tree characteristics (see Paper 
V: Table 3). The expectation values for the dimensions were logical when compared with each 
other as a function of stand age (i.e., D < d

gM
 < D

dom
 and H < h

gM
 < H

dom
).

Multiplicative models for stand variables were linearized by logarithmic transformation. 
Multiplicative structure and the logarithmic linearization can be justified by the known 
dependence among the quadratic mean diameter (D

q
), stem number, and basal area (see Gove 

and Patil 1998, Paper V). From Equation 11, it follows that basal area and stem number can be 
written in logarithmic form as ln(G) = ln(k) + 1 ln(N) + 2 ln(D

q
) and ln(N) = ln(1/k) + 1 ln(G) 

- 2 ln(D
q
), where k = [π/(2 · 100)2]. Replacing D

q
 with other mean characteristics (D, d

gM
, or 

D
dom

) in the linear prediction for ln(G) or ln(N) is assumed to follow the above structures but 
with different coefficients (estimated effects). 

A typical application is predicting values for unknown stand characteristics, which are 
required in, for example, the models implemented in stand simulators. With respect to Finnish 
size distribution models (e.g., Päivinen 1980, Mykkänen 1986, Maltamo 1997, Kangas and 
Maltamo 2000b) and the common FMP data, this means the need for G, d

gM
, and h

gM
 for young 

stands when only N, D, and H are known. As an example, when one is calibrating G with N 
and D, the RMSE decreased from 43.3% to 15.9% and, further, with H, to 15.4% according to 
estimated covariance structure (Paper V: Table 5, 7). Similarly, the RMSE of the expected d

gM
 

(20.0%) and h
gM

 (19.9%) were reduced to 10.5% and 8.4%, respectively. Thus, mean height 
reduced the RMSE of basal area only marginally but that of h

gM
 by 3.6 percentage points (see 

Paper V: Table 7). 

4.2 Models providing relationship between diameter and height

4.2.1 Näslund’s height curve prediction

A linearized Näslund’s (1935) height curve (see Equation 9) was selected as the basis for 
modelling the relationship between dbh and height in advanced stands. The dimensions of the 
basal area median tree explained 61%, 75%, and 64% of the variation in β

1
 for pine, spruce, 

and birch, respectively (see Paper I). After prediction of β
1
, β

0
 was solved for from Equation 

24 such that the curve passes through a known/predicted point, (d
gM

, h
gM

). 

  (24)

(See the notation for equations 8 and 9). The height curve for pine typically bends 
more than that of spruce (see Paper II: Figure 2). The height–dbh relationships presented 
were regarded as auxiliary models, but they are, of course, significant for prediction of tree 
volume. Later, it was found that the assumed linear relationship between the parameters of the 
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Näslund’s curve and the median tree characteristics did not hold within the greater variation 
in the stand developmental stage (see Paper V). Instead, the relationships between β

1
 and 

d
gM

, h
gM

, D
dom

, and H
dom

 were shown as curvilinear, but they could be linearized by taking 
logarithms of both sides (see Figure 2). The basic models including stand age, origin, and 
site factors explained 36% and 78% of the variation in lnβ

0
 and lnβ

1
, respectively (see Paper 

V: Table 4). The corresponding RMSEs were 0.25 and 0.11. When the expectations of lnβ
0
 

and lnβ
1
 were calibrated with common FMP data (e.g., G, d

gM
, and h

gM
), the RMSEs were 

reduced to 0.22 and 0.08, and, further, with additional knowledge of D
dom

 and H
dom

 to 0.19 
and 0.07, respectively (see Paper V: Figure 3). The corresponding degrees of determination 
were 52% and 87% in the former and 74% and 90% in the latter case for calibrated lnβ

0
 and 

lnβ
1
, respectively. Thus, parameters β

0
 and β

1
 could be efficiently calibrated with the BLUP 

models. 
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Figure 2. The relationship between parameter β1 of the Näslund’s height curve and the median (hgM) and 
dominant height (Hdom) on the initial and logarithmic scale.
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4.2.2 Comparison of models for tree height and diameter

The relationships between diameter and height formulated in Papers I, IV, and V were 
compared with each other. This example represents a 28-year-old Scots pine stand on a VT 
site (plot 1010 in the INKA data set) having a dominant height of 10 m. The standard error of 
the fitted Näslund’s curve was utilized for predicting random variation in tree height for the 
tallied trees. These tree heights are shown as open symbols in contrast to measured sample 
trees with filled symbols, in Figure 3. When height curve was predicted using the models in 
Paper I for Näslund’s parameters, the relationship between dbh and height was too nearly 
linear and obviously biased in this stand. Instead, a BLUP model for the Näslund’s curve, 
calibrated with three predictors (N, D, and H) or especially with additional D

dom
 and H

dom
, 

showed a good and an excellent fit to the treewise data, respectively (Figure 3). The pairs 
of stand characteristics, such as D and H or d

gM
 and h

gM
, are useful for the slope, whereas 

dominant tree characteristics are useful for the bending of the Näslund’s curve.
The almost linear dbh curve seems to show good fit (see Figure 3). Because the residual 

errors of dbh or height models are calculated against the opposite axis, the shape of the dbh–
height curve and of the height–dbh curve differ more or less from each other in any case, 
especially if they provide unbiased estimates. The evident difference is that the dbh curve is 
less concave against the dbh-axis than is the height curve. This principal difference is important 
in selection of the approach for generating the trees of the initial stand for a simulator. If we 
have, for example, a threshold height, where the height distribution approach is replaced with 
a dbh distribution approach, the threshold should be selected such that the generated trees are 
as similar as possible around this threshold. 

12
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2

0
0 5 10 15d, cm

h,
 m

Plot 1010

Figure 3. The relationship between tree dbh and height according to models in Papers I (− −), IV (∙∙∙∙), and V (— 
for three and — for four calibrating variables). Note the difference that the residual error in the dbh–height model 
(IV) is calculated against height-axis while errors in height models (I, V) are calculated against dbh-axis. Measured 
sample trees are indicated by a filled symbol ♦ and tallied trees with expected height ± random error by ‘◊’.
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Bias and RMSE for the height characteristics (see Table 2) are calculated for the original 
predictions and after forcing of the height curve to pass through the point (d

gM
,h

gM
) (i.e., Equation 

24 was used for the BLUP model for the Näslund’s curve and the calibrating coefficient was 
calculated for Veltheim’s model). The BLUP model for the Näslund’s curve showed superior 
performance in both young and advanced stands with the randomised test data set. Its use 
resulted in an RMSE of 3.2–14.4% in height characteristics. Models by Veltheim (1987) and 
by Mehtätalo (2005) provided much larger RMSEs, of 14–27% and 12–19%, respectively, 
because of their strongly averaging nature (see Table 2). The commonly applied solution 
forcing the Veltheim’s height curve through d

gM
,h

gM
 (e.g., Packalén and Maltamo 2008) 

reduced the bias and RMSE of the model, achieving accuracy quite comparable with that of 
the Näslund’s curve. Nevertheless, the BLUP model still provided the best performance (see 
Table 2). The model by Mehtätalo (2005) could be efficiently calibrated with treewise data, 
but the option of using sample trees was ignored here. 

Given the bias in tree height with respect to d/D, the BLUP model for the Näslund’s 
curve that utilized additional dominant tree characteristics performed slightly better than that 
with the common FMP variables in the validation test data set (see Figure 4). The model 
for the Näslund’s curve for Socts pine described in Paper I performed generally quite well 
for advanced stands. That model was unbiased around the mean diameter because the curve 
passed through the point (d

gM
,h

gM
). However, the height of the suppressed trees (d/D < 0.4) 

was overestimated by about 50 cm (15%). In young stands, the BLUP model for the Näslund’s 
curve produced unbiased height across the variation from suppressed to dominating trees (see 
Figure 4). The model in Paper I was applied outside the range of its modelling data in young 
stands, resulting in a more severe underestimate in tree height the smaller the relative dbh was 
(Figure 4). Each model provided practically unbiased tree heights for the thickest trees (d/D > 
1.3) in young and in advanced stands. 

Table 2. Bias and, in brackets, RMSE, as percentage of the mean and dominant height generated with the Weibull 
distribution with Näslund’s model in Paper V (BLUP), models by Veltheim (1987) and by Mehtätalo (2005); the 
effect of the calibration through the point (dgM,hgM) is given for models in Paper V and Paper I and in Veltheim 
(1987)

Expectations Through point (dgM,hgM)

BLUP Veltheim Mehtätalo BLUP Paper I Veltheim
Young H -0.61 13.66 -6.74 -0.59 1.27 -1.30

(3.2) (22.2) (16.4) (2.3) (2.4) (3.8)
Hdom 4.25 16.14 -4.23 4.21 1.01 1.48

(14.4) (27.0) (19.4) (14.1) (14.3) (14.3)

Advanced H -2.06 9.38 -0.27 -2.05 -2.91 -1.11
(7.6) (17.0) (16.6) (7.5) (8.2) (7.8)

Hdom -0.08 8.24 3.02 -0.05 0.77 -2.10
(3.4) (14.0) (12.1) (3.2) (3.6) (4.0)
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4.2.3 Prediction of within-dbh-class height variation 

A method using the predicted error term of the linearized Näslund’s curve provided a reasonable 
basis for handling individual tree diameters and heights (Paper II). In this approach, the height 
distribution, conditional to known dbh, remains symmetrical over the variation in dbh. An 
alternative approach, the bivariate SBB distribution, enabled reasonable description of tree 
dimensions as a joint distribution of diameters and heights (see Paper II). The shape of the 
conditional height distribution changed from positively skewed to symmetrical and finally 
negatively skewed as relative dbh increased (see Siipilehto 1996). 

The height variation seemed to be greater for pine than for spruce, particularly within 
the smallest dbh classes (see Paper II: Figure 2). It is obvious that the traditional method 
using dbh distribution and expected height diminishes the variation in tree heights, especially 
for shade-intolerant Scots pine. This was shown in KS goodness-of-fit tests for Scots pine 
stands. When including random variation in tree height, marginal distribution for tree heights 
rejected only 1–4% of the cases, whereas without error-structure, rejections amounted to 11 
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Figure 4. Relative bias (± standard deviation) in tree height with the following models applied for the Näslund’s 
height curve: BLUP model (Paper V) with FMP input variables (—), BLUP model with additional Ddom and Hdom 
(– –), and OLS model (Paper I) with FMP variables (- - - ).
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and 21% for the modelling and test data sets, respectively (see Paper II: Table 8). However, 
this phenomenon was not as evident with shade-tolerant Norway spruce, because of the 
originally wider dbh distributions and a less concave relationship between tree dbh and height. 
Consequently, differences between the KS tests using a univariate and a bivariate approach 
were only marginal for Norway spruce (Paper II: Table 5). 

Visual assessments of the randomly generated tree dimensions from the above-mentioned 
bivariate systems did not prove any great differences between the methods applied. Generated 
tree dimensions for Scots pine were regarded as outliers in 0.28% of the cases with 
Näslund’s model and 0.15% with the constrained SBB model (Paper II: figures 5 and 7). 
The unconstrained SBB model generated a considerably greater proportion of outliers (0.5%) 
quite probably because the unrealistic height–diameter relationships were accepted (see Paper 
II: Figure 6). Also marginal were the differences in the total volume and timber assortments 
(Paper II: tables 6 and 7 for spruce and 9 and 10 for pine). 

An important practical application using the height–diameter relationship is to generalize 
tree height for tally trees (see Lappi et al. 2006). Depending on the application, it may be wise 
to include random variation in the expected value in order to produce a realistic picture of 
the tree dimensions and their variations. If so, we will have greater variation in tree heights, 
which, in turn, results in greater variation in tree volume and, thus, in total and assortment 
volumes in comparison with the variation using the expectation values. Using Näslund’s 
height model in combination with the error-term seems convenient because the linearized 
form of the Näslund’s curve is easy to fit and the error can be assumed to be homogeneous 
and normally distributed (Näslund 1936, p. 52, Paper II). This method was applied in Paper V 
in order not to overstate the accuracy in height and volume characteristics, used as validation 
criteria in the model comparisons.

4.3 Prediction of the size distributions

4.3.1 Model formulation

The form of the median tree (h
gM

/d
gM

) was applicable in explaining some of the variation in 
the shape of SB distribution (see Paper I). This was probably because slenderness reflected 
changes in management history (Hynynen and Arola 1999, Niemistö 1994). From the model 
formulation point of view, it is noteworthy that the dimensions and the form of the median tree 
do not necessarily change much as a result of thinning, unlike basal area and stem number. This 
means that the shape index (see Equation 14) can follow immediate changes in the growing 
stock of a stand. Thus, considerable improvement was found in the models for the maximum 
(λ) and shape (δ) of the SB pdf when one assumes knowledge of stem number and applies it 
in the form of the shape index and its transformations. This was especially the case for the 
shape parameter, since the degree of determination increased from 5–28% to 38–50% (Paper 
I: tables 4 and 6). However, a disadvantage of the model formulation was also found. The 
models constructed in Paper I did not respond reasonably to increased stand density outside 
the range of the modelling data (i.e., when the shape index fell to below 0.55). The shape 
index (denoted as ψ) varied from 0.17 to 0.99 in the drained peatland stands, and it proved 
to be an extremely useful predictor. Indeed, its linearized transformation ln(ψ+1.6)8 alone 
explained 58% and 74% of the variation in ln(λ) and ln(δ), while the degree of determinations 
of the final OLS models was 62% and 82%, respectively (see Paper III: Figures 1 and 2; see 
also Appendix 1). The degree of determination is a highly data-dependent characteristic, but, 
by contrast, the RMSE of the model is more comparable with the other RMSEs between the 
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optional models and between different modelling data sets. Thus, the RMSEs of the OLS 
model for ln(δ) for Scots pine was 0.30 without the shape index and 0.25 with the shape index 
(see Paper I) and 0.16 in the OLS model using the transformations ln(ψ+1.6)8, ln(ψ+1)3 and 
ln(ψ+1)4 (see Paper III). These improvements were mainly due to model formulation.

It is well known that the Weibull distribution is theoretically not as flexible as the SB 
distribution with respect to variation in the shape of the distribution (e.g., Hafley and Schreuder 
1977, Paper I). In practice, this feature may have major or minor relevance, depending on 
the ability to predict the variation of the ML estimated parameters from available stand 
characteristics. The degree of determination of the Weibull parameter c was rather low – 
namely, 39, 22, and 18% with the common FMP input data (G, d

gM
, and h

gM
) for pine, spruce, 

and birch, respectively (see Paper I). Including the shape index improved the models for 
spruce (r2 = 51%) and birch (24%) but not that for pine. 

The Weibull distribution was not able to perform efficient prediction with the available 
FMP inventory data or even assuming the additional knowledge of stem number. Therefore, 
I proposed trying additional dominant tree characteristics. Dominant height showed its 
potential in relation to the Weibull distributions for tree heights in juvenile Scots pine stands 
(see Paper IV: Figure 1). Indeed, the transformation 1/ln(H

dom
/H) could on its own explain 

about 90% of the variation in the shape parameter c. When it comes to BLUP estimation for 
the dbh distribution parameters in Paper V, some aspects are worthy of mention. If we assume 
that the ratio of two stand characteristics is important for prediction/calibration of the model, 
the multiplicative model structure takes this automatically into account. Assume that Y

i
 = 

f[ln(x
1
/x

2
)], it follows that Y

i
 = f[ln(x

1
)-ln(x

2
)]. Because c of the height distribution was closely 

correlated with 1/ ln(H
dom

/H), it follows that 1/c has to be closely correlated with ln(H
dom

/H). 
Therefore, in calibration of the model for 1/c of the dbh-frequency distribution with D and 
D

dom
, the ratio can be written in the form ln(D

dom
)-ln(D). In the above case, the coefficient is 

calculated for each previous term from the variance–covariance matrix of the corresponding 
residuals by means of Equation 19. The same assumptions applied also for models for δ and c 
of the SB and Weibull basal area-dbh distributions, respectively. The inverse of δ and inverse 
of c of the basal area-dbh distributions were also closely related to the ratios of two mean 
stand characteristics, but the logarithmic transformations ln(δ) and ln(c) performed slightly 
better in general (see Paper V). One general advantage of the logarithmic transformation is 
that it ensured the requirement of the positive value for c and δ.

4.3.2  Regression estimation techniques 

The regression model estimation techniques including OLS, mixed, SUR, and the multivariate 
mixed model denoted as MSUR were validated in Paper III. Although each of these models 
provided quite excellent estimates for stem number, ‘volume’ as ∑dbh3 and ‘value’ as ∑dbh4 
of the stock, it was evident that the more advanced techniques provided enhanced model 
performance. Thus, the mixed models with a random stand component were superior to OLS 
even though the mixed-effect models were validated as fixed models. SUR took into account 
the correlation between the residuals of the regression models (r = 0.74), while MSUR 
accounted for both the random stand effect and the crossmodel error correlation. Both of the 
last mentioned were superior to the OLS and mixed models. Surprisingly, the ranking of the 
model through generated stand characteristics (i.e., model application) seemed opposite the 
ranking of the error terms of the estimated models (i.e., model statistics). Indeed, s

e
 of 0.262 

with OLS was smaller than s
e
 + s

stand
 of 0.265 in the mixed model, which was smaller than 

s
e
 + s

stand
 of 0.270 in MSUR for parameter λ (see Paper III: Appendix 1). In any case, the 
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significance of the estimated parameters is more reliable in the models with mixed effects 
because the dependencies among repeated measurements are better accounted for (Lappi 
1993, p. 68). 

Each model for height distribution was statistically sophisticated (see Paper IV). Parameter 
prediction models, using PPM, were estimated according to the mixed-effect SUR approach, 
whereas the generalized linear model fitted the distributions and estimated the prediction 
model in a single step (Cao 2004). Note that the latter model, because of its complicated 
structure, did not include mixed effects. Both approaches were further combined with the 
moment estimator (see Equation 12), denoted as PPM+M and GLM+M. Again, each model 
provided excellent results and the differences between estimated models were quite marginal. 
The similar performance was simply due to exceptionally close correlation between the shape 
parameter c and the ratio between H

dom
 and H. However, the overall best performance was 

provided by the hybrid GLM+M (see Paper IV: Table 5). Consequently, we can say that the 
advanced estimation technique resulted in improved model performance. 

As before, the accuracy of the applications could not be seen directly in the estimated 
models – namely, in the approximate standard errors (ASEs) of the estimated parameters (see 
Paper IV: Table 3). This was simply because in the traditional PPM, the Weibull distribution 
parameters first were estimated for each stand and in the second step they were used as true 
values (without error) in PPM estimation. Instead, in the GLM, the ASEs were calculated 
from the tree-level model fit and showed about three times higher values than the ASEs in 
the PPM approach. In any case, the inclusion of the moment estimator in GLM+M reduced 
the ASEs of the remaining estimated parameters in comparison with the original GLM (Paper 
IV: Table 3).

4.3.3 Behaviour of the distribution models

The optional diameter distribution prediction models were compared, first with respect to 
varying stem numbers in the assumed 25-year-old pine stand with fixed d

gM
 = 10 cm and G 

= 10 m2ha-1. Distributions are predicted by means of stem number N = 3,100 ha-1 for high 
density, N = 2,500 ha-1 for moderately high density, N = 1,900 ha-1 for moderate density, and 
N = 1,300 ha-1 for low density (shape indices between 0.41 and 0.98) of a forest stand. The 
most obvious changes in the shape of the predicted distribution could be seen with the SB 
MSUR model (see Figure 5A). Simultaneously, the resultant errors in stem numbers were 
only 1, 3, -5, and -4%, from the highest to the lowest stand density. Distributions according to 
the SB

G
 BLUP model (see Figure 5B) did not vary enough with respect to stem number. The 

corresponding errors in N were 19, 16, 7, and -11%. Even more inadequate response to stem 
number variation was found with the Weibull models. Distributions from the W

G
 BLUP model 

(see Figure 5C) resulted in errors in N of 34, 23, 6, and -28%. When the W
N
 BLUP model (see 

Figure 5D) was scaled to a known basal area of 10 m2ha-1, the resulting errors in N were 27, 
17, 4, and -16%. Thus, response to the variation in stem number was better achieved in W

N
 as 

compared with the W
G
 model, but both SB models were superior to the Weibull models. 

The high-density pine stands under the SB (G+N) model showed bimodal diameter 
distributions (see Paper I: Figure 6), while distributions for dense stands resembled almost 
decreasing distributions with the SB MSUR model (see Figure 5). Additionally, even much 
higher densities could be included in the SB MSUR model successfully, resulting in an inverse 
J-shaped distribution. For example, N of 6,000 ha-1 (shape index 0.21) still resulted in less than 
9% error in the stem number generated. In conclusion, efforts to improve the ability of a model 
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to respond to variation in stem number succeeded rather well with the SB pdf, especially by 
means of the SB MSUR model presented in Paper III.

In the next comparison, the behaviour of the distribution model was checked with 
variation in the dominant diameter assumed while the mean diameter, D, was fixed to 8 cm 
for a 25-year-old pine stand. D

dom
 of 12, 16, 20, and 24 cm represented D

dom
/D ratios of 1.5 to 

3. The dominant diameter that was calculated from the predicted distribution was generally 
quite close to that of the given input variable. The relative differences from the smallest to the 
highest value of D

dom
 were as follows: SB MSUR in Figure 6A: -10.9, -3.7, 4.8, and 12.0%; 

SB
G
 BLUP in Figure 6B: -2.8, -2.3, -1.7, and -0.7%; W

G
 BLUP in Figure 6C: 0.2, -0.7, -1.2, 

and -1.2%; and, finally, W
N
 BLUP in Figure 6D: -4.4, -2.9, 3.6, and -4.1%. Thus, the BLUP 

models detected 99–103%, whereas the SB MSUR model detected 65% (D
dom

 13.3–21.1 cm), 
of the given 12–24-centimetre variation. According to the accuracy calculations, the most 
accurate response to the dominant diameter was obtained with the W

G
 and SB

G
 BLUP models. 

Nevertheless, the SB MSUR model detected the variation in D
dom

 considerably well through 
calibration of input variables N, G, and d

gM
 with known D and D

dom
.
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Figure 5. Variation in the shape of the predicted distribution with respect to variation in stem number (N of 3,100, 
2,500, 1,900 and 1,300 ha-1) when dgM was 10 cm and basal area 10 m2ha-1. The models applied are: (A) SB 
MSUR (Paper III), (B) SBG, (C) WG, and (D) WN BLUP (Paper V).
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4.4 Final model validation

4.4.1 Model performance for advanced stands

Each distribution model performed similarly, underestimating sawlog volume and 
simultaneously overestimating the pulpwood volume. The SB

G
 BLUP model with additional 

N resulted in the least bias in total and commercial wood volumes, whereas SB MSUR 
provided smaller biases than the W

N
 BLUP model did (see Table 3). In general, differences 

between biases among basal area-dbh distribution models were quite small. An exception was 
the considerably greater bias in waste wood volume with the SB MSUR model (see Table 3). 
In terms of bias, the most beneficial additional stand characteristic was stem number.

The differences between the distribution models in the RMSE of total volume were hardly 
visible. The highest RMSE in total volume was generated with W

N
 BLUP using the additional 

knowledge of dominant dbh and height (2.4%), while the lowest RMSE was provided by W
G
 

BLUP and SB MSUR with the additional knowledge of stem number (1.7%). In general, 
the dbh-frequency W

N
 BLUP model provided the worst validated volume characteristics 

(see Figure 7). If either the common FMP data or additional dominant tree characteristics 
were available, the W

G
 BLUP model provided the most accurate total and timber assortment 
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Figure 6. Variation in the shape of predicted distribution with respect to variation in dominant diameter (Ddom of 
12, 16, 20, and 24 cm) when D was 8 cm and age 25 years. The models applied are: (A) SB MSUR (Paper III), (B) 
SBG, (C) WG, and (D) WN BLUP (Paper V).
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volumes. The additional knowledge of stem number benefited the SB MSUR model in 
particular (see figures 7 and 8), but, simultaneously, the differences between the basal area-
dbh distribution models become very slight, except those in generated waste wood volume 
(see Figure 7) and stem number (see Figure 8). Indeed, the SB MSUR model resulted in an 
RMSE of 14% in waste wood while that with W

G
 BLUP was 25%. Besides, stem number 

knowledge reduced RMSE in generated N to only 5% using the SB MSUR model, while the 
W

N
, W

G
, and SB

G
 BLUP models resulted in an RMSE in N of 6, 14, and 9%, respectively. 

When the dominant tree characteristics were included, the improvement in the D
dom

 and H
dom

 
generated was the most obvious with the SB

G
 BLUP model. Indeed, the RMSE of 5.2% in 

D
dom

 and 3.5% in H
dom

 for the common FMP data fell to only 1.6% and 2.3%, respectively 
(see Figure 8). Unfortunately, this obvious improvement was not reflected similarly in sum 
characteristics, stem number, or volume. In contrast, each model provided a slightly more 
inaccurate total volume (RMSE of 2.1–2.4%) in comparison with the accuracy found with 
FMP data (RMSE of 1.7–2.2%). Further, the W

G
 BLUP model provided the least accurate N 

(RMSE of 17%). According to Figure 7, stem number seemed a more appropriate additional 
stand variable than dominant tree characteristics for use for calibration/prediction of dbh 
distribution for advanced stands. Note that the results from test data were in line with the 
given examples of distribution model behaviour (see figures 5 and 6).

Model Predictors Volume Logs Pulp Waste N Ddom Hdom

WN G, dgM, hgM 1.15 9.95 -9.87 1.75 -1.51 1.65 0.40
Hdom 1.12 10.04 -10.06 2.52 -1.16 1.79 0.52
Ddom 1.02 9.57 -9.81 2.93 -0.86 1.75 0.37
N 0.90 7.28 -7.37 -0.59 -1.89 0.76 0.18
Ddom, Hdom 0.96 9.51 -9.87 2.82 -0.86 1.75 0.38

WG G, dgM, hgM 0.17 1.56 -2.22 4.99 2.39 0.10 -0.16
Hdom 0.19 1.82 -2.56 5.47 2.41 0.29 -0.02
Ddom 0.20 1.98 -2.58 2.55 0.54 0.23 -0.16
N 0.19 1.63 -2.15 3.39 1.62 -0.16 -0.18
Ddom, Hdom 0.14 1.93 -2.62 2.27 0.49 0.22 -0.15

SBG G, dgM, hgM 0.18 1.60 -2.16 3.61 2.32 -2.09 -0.80
Hdom 0.28 2.60 -3.22 2.58 1.53 -1.51 -0.54
Ddom 0.57 4.82 -5.13 -1.28 -1.13 -0.38 -0.31
N 0.15 0.57 -0.37 -1.20 -0.58 -2.61 -0.92
Ddom, Hdom 0.52 4.80 -5.21 -1.63 -1.21 -0.39 -0.29

SB MSUR G, dgM, hgM 0.53 1.92 -0.98 -6.28 -3.14 -0.05 -0.22
Hdom 0.53 2.00 -1.10 -6.16 -2.99 -0.04 -0.10
Ddom 0.46 1.84 -1.09 -5.70 -2.86 0.02 -0.26
N 0.34 1.48 -1.10 -2.80 -1.55 -1.07 -0.48
Ddom, Hdom 0.40 1.76 -1.09 -5.94 -2.89 0.02 -0.25

Table 3: Bias (%) in stand characteristics for advanced stands (H ≥ 9 m) according to WN, WG, and SBG models in 
Paper V and SB distribution models in Paper III (MSUR). The smallest biases are highlighted in bold with respect 
to the combination of input variables.
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Figure 7. RMSE (%) in assortments according to Weibull and SB models with known G, dgM, and hgM and 
including additional knowledge of N or Hdom and Ddom for advanced stands.

Figure 8. RMSE (%) in Ddom, Hdom, and N according to Weibull and SB models with known G, dgM, and hgM and 
including additional knowledge of N or Hdom and Ddom for advanced stands.



4.4.2 Model performance with young stands

Model Predictors Volume Pulp Waste G Ddom Hdom

WN N, D, H 4.62 5.70 0.30 1.40 3.51 3.64
Hdom 1.22 1.58 -0.25 -0.17 1.30 1.70
Ddom 1.72 2.34 -0.84 -0.08 1.29 2.63
Ddom, Hdom 1.27 1.74 -0.68 -0.27 1.09 1.98

WG N, D, H 3.61 3.04 6.12 1.55 1.17 2.64
Hdom 4.22 3.81 6.01 3.84 0.49 1.40
Ddom 8.10 8.66 5.76 6.56 1.26 2.64
Ddom, Hdom 6.56 6.80 5.53 5.65 0.92 1.94

SBG N, D, H 1.33 0.88 3.27 -0.54 -0.51 1.99
Hdom 3.59 3.61 3.48 2.92 -0.83 0.96
Ddom 7.60 8.71 3.11 5.75 0.60 2.40
Ddom, Hdom 6.18 6.93 3.13 4.93 0.00 1.62

W height N, D, H 9.11 12.66 -3.73 5.04 10.06 -0.56
Hdom 1.49 2.94 -4.19 1.72 5.83 -2.51
Ddom 5.78 8.61 -4.71 3.57 7.26 -1.74

SB MSUR N, D, H 8.59 9.14 6.32 6.73 -1.23 1.65
Hdom 5.42 5.57 4.76 5.60 -1.70 0.46
Ddom 5.66 5.91 4.59 5.33 -1.55 1.32
Ddom, Hdom 5.35 5.51 4.68 5.39 -1.62 0.70

Table 4. Bias in stand characteristics according to alternative Weibull and SB distribution models for young 
stands – models included the Weibull and SB distributions: WN, WG, and SBG models in Paper V, Weibull height 
distribution in Paper IV, and SB MSUR in Paper III (the smallest biases are highlighted in bold with respect to the 
combination of input variables)

In young stands, the frequency-based Weibull models (height distribution of Paper IV and 
dbh distribution of Paper V) performed better in general than did basal area-dbh distribution 
models (see figures 9 and 10). The difference between these models was the most obvious in 
the accuracy of waste wood (see Figure 9) and basal area (see Figure 10). In terms of bias, the 
W

N
 BLUP model with H

dom
 performed the best, whereas in terms of RMSE, the combinations 

of the W
N
 BLUP model with H

dom
 and D

dom
 as additional variables to FMP data showed the 

best performance. Indeed, in the former case, the W
N
 BLUP model resulted in bias of less 

than 2% in volume characteristics (see Table 4 and also Paper V: Table 8), and in the latter, 
the RMSE percentage was 11–15% for total, pulpwood, and waste wood volumes (see Figure 
9). Additional D

dom
 slightly improved the W

N
 BLUP and SB MSUR model behaviour in terms 

of bias (see Table 4) but, at the same time, achieved a twofold to threefold increase in the 
biases with W

G
 BLUP and SB

G
 BLUP models used for young stands (see Table 4). Clear 

underestimations in total and pulpwood volumes could be explained by the underestimated 
basal area and H

dom
 whenever D

dom
 was used as a calibrating variable for the W

G
 and SB

G
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BLUP models. In addition, the resulting RMSE in total and in pulpwood volume was about 
twice that of the W

N
 BLUP model provided for young stands (see Figure 9). Nevertheless, the 

most accurate D
dom

 (with an RMSE of 3.7%) was yielded by the W
G
 BLUP model including 

D
dom

 and H
dom

 as input variables. 

Young stands (H < 9 m)

0

5

10

15

20

In
pu

t N
,D

,H

W
_h

ei
gh

t

W
N
_B

LU
P

W
G
_B

LU
P

SB
_B

LU
P

SB
_M

SU
R

In
cl

. H
do

m

W
_h

ei
gh

t

W
N
_B

LU
P

W
G
_B

LU
P

SB
_B

LU
P

SB
_M

SU
R

In
cl

. H
do

m
,D

do
m

W
N
_B

LU
P

W
G
_B

LU
P

SB
_B

LU
P

SB
_M

SU
R

R
M

SE
, %

G Ddom Hdom
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Naturally, the height distribution model benefited from the knowledge of H
dom

, which was 
an explaining variable in the model. Nevertheless, it could not produce as accurate volume 
characteristics as did the W

N
 BLUP model with the same input variables. The most likely 

reason was the less accurate dbh distribution, which was generated from height distribution 
and the model for tree dbh. Thus, the bias and RMSE in basal area and D

dom
 according to 

the height distribution modelling approach were considerably higher than the corresponding 
numbers from the W

N
 BLUP model (see Table 4 and also Figure 10). These models seemed to 

result in an almost equal RMSE of 4.3–4.7% for H
dom

 (see Figure 10).
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5 DISCUSSION AND CONCLUSIONS 

Many studies using Weibull and SB distribution have focused on the comparisons between 
distributions and their fitting methods (e.g., Hafley and Schreuder 1977, Holte 1993, Zhou 
and McTague 1996, Kamziah et al. 1999, 2000, Scolforo et al. 2003, Zhang et al. 2003, 
Wang and Rennolls 2005, Palahi et al. 2007). The SB distribution and maximum likelihood 
estimation method were regarded as superior in most of the comparisons. Many fitting 
methods needed such information about the dbh distribution that they cannot be considered 
applicable from a Finnish point of view without some auxiliary prediction models. Among 
the necessary characteristics were the minimum and maximum dbh, standard deviation of 
dbh, and percentile d95. Minimum and maximum belong to ‘extreme order statistics’, which 
means that they are dependent on the sample size. Nevertheless, this phenomenon has not been 
taken into account in the construction of models for them (see Rennols and Rollinson 1985). 
In general, moments are easier to predict from stand characteristics than are the parameters 
of the distribution function (e.g., Knoebel and Burkhart 1991). However, Burk and Newberry 
(1984) cautioned that moment-based recovery is very sensitive to small changes in moment 
predictions. Overall, if one particular method is regarded as superior, it should provide more 
reliable predictions for a new stand than the methods compared with it.

In this thesis, the Weibull, Johnson’s SB, and SBB distributions were estimated by means 
of the maximum likelihood method, which is generally regarded as the best because it utilizes 
all information measured for the distribution (e.g., Bailey and Dell 1973, Johnson 1949b, 
Shiver 1988). One parameter was excluded through setting of the minimum dbh to zero. This 
can be justified from a number of studies (e.g., Hafley and Schreuder 1977, Maltamo et al. 
1995, Kamziah et al. 1999, Parresol 2003, Gove 2003b). In general, instead of on the accuracy 
of the predicted parameters, the focus was placed on the applications in terms of accuracy in 
the stand characteristics generated (stem number, basal area, dominant tree characteristics, 
total volume, assortment volume, etc.). 

One of the most important objectives for this thesis involved the attempts to provide more 
variation and simultaneously increase the accuracy in the shape of predicted dbh distributions 
in comparison with previous models in Finland. Indeed, some previous models could provide 
only one distribution from the known median diameter and basal area (e.g., Mykkänen 1986, 
Kilkki et al. 1989, Maltamo’s 1997 model for pine). Slight variation could be included through 
age variation in the models by Kilkki and Päivinen (1986), Maltamo et al. (1995), and Maltamo 
(1997) for spruce or for variation in mean height by Päivinen (1980). The percentile-based 
model of Kangas and Maltamo (2000b), including basal area and stem number, could provide 
a wide range of shapes of dbh distributions, including bimodal or multimodal distribution as 
a possible outcome. In previous Nordic studies, SB distribution parameters were predicted by 
means of stem number with mean height (Mønness 1982, Holte 1993) or with additional basal 
area (Tham 1988). 

The species admixtures were not included in the models for species-specific distributions, 
because of statistical insignificance (Papers I and II; see also Tham 1988), but were used 
earlier as dummy variables by Päivinen (1980) and as a species proportion by Maltamo et al. 
(1995) in distribution models for the whole stand. Furthermore, site factors are only rarely 
included in Finnish parameter prediction models (Päivinen 1980, Sarkkola et al. 2005) but 
have been commonly used for predicting size distribution elsewhere, especially in terms of 
site index (e.g., Mønness 1982, Bowling et al. 1989, Holte 1993, Liu et al. 2004, Westfall et 
al. 2004).
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It was shown that the additional knowledge of the stem number enabled variation in 
the shapes of predicted distributions and had potential to improve the accuracy of the dbh 
distribution considerably (see Papers I and III). Stem number was included in the models 
by means of the transformation introduced as the ‘shape index’. Later, it has been applied as 
an optional measure of stand diversity, by Rouvinen and Kuuluvainen (2005). For Paper I, 
the modelling data were too limited for obtaining successful formulation of the relationship 
between shape index and distribution parameters; therefore, some anomalies remained when 
the models were applied outside the range of the modelling data. By contrast, the data in 
Paper III included extremely wide variation in stand characteristics, such as mean diameter, 
stand basal area, and stem number. Thus, said data provided an excellent basis for studying 
the relationship between SB distribution parameters and stand characteristics. According to 
independent data sets, the models formulated from the drained peatland data (Paper III) proved 
to be superior to the previous Weibull model by Mykkänen (1986) and at least comparable 
with percentile-based model from Kangas and Maltamo (2000b). This was also the case when 
these models were applied for pine stands on mineral soil (Paper III: Table 4). Furthermore, 
the SUR and MSUR models addressed in Paper III did not show any trend in the bias of stem 
number with respect to thinning intensity from unthinned to heavily thinned stands. As a 
whole, models by Kangas and Maltamo (2000b), Mabvurira et al. (2002), and Mehtätalo et al. 
(2011) have shown the improvement effect of additional stem number on the accuracy of the 
predicted dbh distributions. 

A Weibull function was used to describe height distribution for juvenile Scots pine stands in 
Paper IV. In this case, an efficient transformation was formulated as a ratio between dominant 
and mean height. It was derived from the percentile estimator for the shape parameter c. 
Quite a similar transformation was earlier utilized by Sarkkola et al. (2003, 2005). Instead, 
Nord-Larsen and Cao (2006) used the ratio between D

q
 and H

dom
. A model for 1/c of the 

Weibull dbh-frequency distribution was found to benefit greatly from the knowledge of two 
different dimensions – e.g., D

dom
 and D. Models for 1/c of the Weibull pdf (Paper V) have been 

presented also by Robinson (2004) and Mabvurira et al. (2002). 
In general, the basal area-dbh distribution models proved superior to the dbh-frequency 

distribution models for advanced stands, in particular because of the reliability of volume 
estimates, while for young stands the situation was the opposite (see Paper V). The ranking 
of the basal-area-based models was dependent on the content of known stand variables used 
for prediction/calibration. In any event, differences, especially in total volume, were usually 
quite marginal. The most obvious differences were found in the accuracy of the waste wood 
volume and stem number, both indicating the accuracy versus inaccuracy in the left-tail of the 
distribution and, thus, in the potential energy wood fraction. 

A slightly controversial feature appears in relation to two optional approaches for young 
stands. Firstly, models can be constructed for continuous height distribution, with dbh 
modelled from tree height for trees above breast height (Paper IV). Secondly, dbh distribution 
can be modelled for trees above breast height, with height modelled from the known dbh 
(e.g., Paper V). The trees generated from these two optional methods would be quite different, 
not least because of the differences between the models for individual tree dbh and height. 
Applying dbh distribution models as early as possible could be wise if one wishes to minimise 
the differences in generated trees between these two approaches. The motivation is that for 
the early stage of a stand, the relationship between diameter and height is almost linear but 
as succession progresses and especially after canopy closure, the relationship becomes more 
and more curvilinear. The reasonable stage of stand development for switching from a height 
distribution approach to dbh distribution approaches could be at the mean height of 4 m. 
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Indeed, according to Paper IV, practically all trees have reached breast height, and the dbh–
height relationship was still almost linear, when H was 4 m (see the paper’s Figure 5).

To my knowledge thus far, an SB MSUR model could be recommended for practical 
use if the stem number is known in addition to basal area in advanced stands. This model 
was capable of capturing the wide range in stand densities while yielding only slight biases 
in stem number. Simultaneously, SB

G
 BLUP captured about 60%, W

N
 BLUP 40%, and W

G
 

BLUP only 20% of the range in stem number in the example given (see Figure 6). The most 
relevant optional models in this situation are the species-specific percentile-based models by 
Kangas and Maltamo (2000b). In the case of broadleaved species, the SB (G+N) models for 
birch (Paper I) are an option. Indeed, both of the above-mentioned models have proved to 
perform well among the alternative models in use in Finland (Maltamo et al. 2002). Without 
stem number knowledge, the W

G
 BLUP model provided a relevant option for the SB MSUR 

model in advanced stands. When the dominant tree characteristics were included as explaining 
variables, the W

G
 BLUP model turned out to be superior to the SB MSUR model, in particular 

because of improved accuracy in timber assortments (see Table 3 and also Figure 8). However, 
its obvious weakness was the inaccuracy in the waste wood fraction and stem number, no 
matter the set of input variables (see figures 6, 8, and 9). The Weibull model for the height 
distribution, especially the hybrid model, is recommended for practical use for stands in their 
youngest stage. Even though the model was estimated for Scots pine, it is recommended for all 
species in seedling and sapling stands, on account of the lack of relevant models for juvenile 
stands. Furthermore, the Weibull frequency distribution (W

N
 BLUP) is a recommended option 

for sapling stands above a mean height of 4 m, not least because its volume estimates are 
potentially superior to those yielded by the height distribution approach (see Table 4 and also 
figures 10 and 11). 

Finally, if there is a need to mimic forest stand structure that include within-dbh-class height 
variation, use of Näslund’s model in combination with the error structure introduced in Paper 
II and applied in Paper V is recommended. Siipilehto (2001a) gave an example from a mature 
Scots pine stand where the variation in expected tree height was extremely low, from 23 to 26 
m, and inclusion of the predicted within-dbh-class height variation increased the variation in 
tree height from 19 to 28 m, close to the observed variation (see Figure 4 in Siipilehto 2001a). 
Simultaneously with inclusion of random variation in tree height, the Kolmogorov-Smirnov 
tests showed improved goodness of fit to the observed height distributions. 

The bivariate SBB model is also suitable, especially if a concave height–diameter 
relationship is a required constraint. It is absolutely necessary that the minimum and maximum 
endpoints of the marginal distributions be beyond the observed data (e.g., Schreuder and Hafley 
1977, Wang and Rennols 2007). If the endpoints are fixed to the minimum and maximum 
observations, the unreasonable height–diameter curve from SBB is not only a possible but 
a definite outcome (see Li et al. 2002). Furthermore, fixing the endpoints according to data 
disables the tails of bell-shaped distribution, resulting in unnecessary lack of fit. 

Many studies have dealt with the height–diameter relationship in a stand (e.g., Curtis 
1967, Newton and Amponsah 2007, Leduc and Goltz 2009). Among the sigmoid curves 
applied have been ChapmanRichards, Gomperts, Korf, Richards, Schumacher, Sloboda, and 
Weibull functions. However, no function has been found to be superior (Mehtätalo 2004). 
Sometimes the model is based on relative height as a function of relative dbh (Kiviste et al. 
2003, Nishizono et al. 2005), forcing the curve to pass through the point (D,H) or close to the 
point (D

dom
,H

dom
), as the model by Eerikäinen (2003) does. Korf functions (e.g., Parresol 1992) 

have been commonly used in Finland (Lappi 1997, Eerikäinen 2003, Hökka and Ojansuu 
2004, Mehtätalo 2004, 2005). A model h = exp(βX), in which X includes only tree diameters 
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(Kilkki 1983) or additional stand and site factors (Veltheim 1987, Eerikäinen 2009), has been 
linearized using the logarithmic transformation. Models by Veltheim (1987) and Mehtätalo 
(2005) for tree height did not include any height-based stand characteristics (i.e., H, h

gM
, H

g
, 

or H
dom

), resulting in a strong averaging character. Indeed, Newton and Amponsah (2007) 
noticed the evident improvement in their alternative height models when dominant height 
was included. As a conclusion we can say that simple height models utilising the set of stand 
characteristics of common FMP are lacking in Finland.

The Näslund’s curve is typically used in order to generalize height for tally trees by 
fitting the curve to sample tree data (e.g., Heinonen 1994, Elfving and Kiviste 1997) but is 
seldom modelled for prediction purposes in Finland (Siipilehto 1996, Kangas and Maltamo 
2002, Maltamo et al. 2007), the exception being this thesis. The simple height curve models 
described in Paper I have already been utilized in many connections by, for example, Kangas 
and Maltamo (2003), Pukkala and Miina (2005), and Maltamo et al. (2006). However, a 
word of caution must be given. I noticed that the assumed linear relationship between the 
parameter β

1
 and the stand characteristics on the original scale did not hold for the data with 

a wide range of development stages for stands. Instead, the logarithmic transformation of 
both sides linearized the relationship (see Figure 2). Recently, Korpela and Tokola (2006) 
found a slight bias when using the height model of Paper I. When models by Veltheim (1987) 
and Mehtätalo (2005) were compared with Näslund’s model as specified in this thesis, the 
resulting RMSEs in H and H

dom
 were manifold. The a posteriori calibration of the alternative 

height models resulted in quite comparable accuracy, but, still, the height model in Paper V 
proved slightly better, whereas Veltheim’s model and the model in Paper I provided almost 
identical accuracy. Also, Packalén and Maltamo (2008) noticed similarity in terms of volume 
estimates when using the height model in Paper I or the calibrated height model by Veltheim 
(1987). Note the principal difference that the model for Näslund’s parameters in Paper V is 
able to utilize various stand characteristics flexibly whereas the recent mixed-effect models 
from Mehtätalo (2005) and Eerikäinen (2009) can be localised efficiently by the sample tree 
data, if available. Regardless, Mehtätalo et al. (2007) noticed the incompatibility between the 
Korf-function-based height model (Mehtätalo 2005), calibrated with one sample tree, and the 
fitted Näslund’s curve as a ‘ground truth height’.

The models formulated utilized some stand characteristics that are not always collected in 
forest management planning field work. Stem number is typically optional for basal area in 
the forest inventory field work for private forest estates. However, still-current instructions for 
forest company field work include both as required characteristics (Kuvioittainen ... 1998). 
A similar situation obtains with dominant height. In Paper V, the main stand characteristics 
were modelled simultaneously. In this case, the models were presented for Scots pine, but 
similar models have been formulated for Norway spruce (Siipilehto 2006b) and birch species 
(unpublished) for the MOTTI simulator. In the absence of the characteristics necessary for 
the size distribution model used or the height–dbh relationship, the predictions are provided 
by these models; either the expected value with the minimum required input variables (tree 
species, stand age, location as a temperature sum, and site characteristics) or the information 
available on the stand characteristics is used for calibration of the issued unknown parameters. 
Linear prediction theory provided a convenient approach because the models could be 
formulated without being fixed to a particular existing inventory system. Indeed, in the 
case where all eight stand characteristics can be selected freely for calibration of unknown 
parameters, we have 255 different models for them described by the basic model and the error 
variance–covariance matrix.
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It is well known that the stand variables collected in the field include considerable 
measurement error (e.g., Heikkinen 2002, Ojansuu et al. 2002, Haara and Korhonen 2004), the 
most inaccurate variables being stem number (RMSE of 50−80%) and basal area (20−40%). 
Recently, considerable improvement in the accuracy of stand characteristics has been found 
by means of laser scanning data – according to Suvanto et al. (2005) and Næsset (2002), 
RMSE in stem number and basal area was 18–35% and 8–21%, respectively. If one wants 
to emphasise differences in the accuracy between stand variables, the average measurement 
errors could be added to the diagonal variances (Paper V: Table 5), resulting in a diminishing 
calibration effect (see Equation 19). When Siipilehto (2006b) checked this option by using the 
corresponding models for spruce, the resultant, considerably less efficient calibration achieved 
sometimes irrelevant combinations of the predicted stand variables. The expectation value is, 
of course, sensitive to the error in the driving variable, stand age. However, the calibration 
was able to correct the predictions efficiently despite the errors that were generated in stand 
age (ibid.). 

In this thesis, I focused mostly on Scots pine, which is the most common dominating species 
in Finland. Some of the models presented for pine may provide a relevant basis for prediction 
of the distribution for other species, too. I regard height distributions for pine-dominated 
young stands (see Paper IV) and SB distributions for drained Scots pine-dominated peatland 
stands (see Paper III) as such promising models. In addition, the latter could be validated 
for natural and semi-natural forests in Finland because it performed well with unthinned 
peatland stands. The family of the BLUP models (see Paper V) for Scots pine should be 
extended to cover Norway spruce and birch species. This would be especially useful because 
of the lack of diameter distribution models for young stands up to an H

dom
 of about 10 m and 

also for improved Näslund’s height curves. Further comparisons between recently published 
models for stand characteristics, especially that for H

dom
 in juvenile pine stands by Huuskonen 

and Miina (2006) and the BLUP models (see Paper V), should be made. The effect of the 
accuracy of the predicted distributions on growth and yield prediction remains to be studied. 
Also, parameter recovery methods should be compared with parameter prediction models, in 
particular, when required percentile or moment based stand characteristics are known. Laser 
scanning is becoming current practice for large-scale operations; therefore, new kinds of 
approaches are needed for describing stand structure (e.g., models for stand characteristics 
and distributions based on laser pulses, k-NN methods, etc.). NFI field data collection has 
recently moved toward more detailed description of stands, so the models presented may 
become more useful with respect to studies and calculations based on NFI field data. 

The results described in this thesis showed that:

Selection of distribution function was important but not a crucial issue. A theoretically •	
more flexible SB function was not as superior as could be expected in comparison with 
the Weibull function. This was simply because the parameters of the SB function were 
not as closely correlated with stand characteristics as were those of the Weibull function. 
Consequently, the variation in the estimated parameters of the Weibull distribution could 
be more accurately predicted/calibrated in some situations than that for SB distribution. 
The two-parameter Weibull distribution seemed an appropriate choice even though it 
was not compared with the three-parameter one in this thesis (see Maltamo et al. 1995). 
As a frequency distribution it can be recommended for dbh and height distribution in 
young stands. Choosing the best basal area-dbh distribution for advanced stands was a 
matter of the set of known input variables. With the common FMP data, as well as with 
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the additional information apart from stem number, Weibull and SB distributions were 
comparable. The additional knowledge of the stem number benefited the calibration and 
modelling of the SB distribution more than it did the Weibull distribution.

Model formulation played the most important role in the two studies conducted, when •	
one was constructing the models for the parameters of SB for basal area-dbh distribution 
in drained peatland stands and in modelling of Weibull for height distribution in sapling 
stands. In both cases, particular attention was paid to finding effective transformations 
in order to linearize the dependence and homogenise the variance between the modelled 
parameters and the combinations of stand characteristics as explaining variables. The 
final formulations can be considered successful.

The choice of statistical method played a minor role in the ability of a model to predict •	
stand structure (see also Liu et al. 2009). Two studies focused on the alternative methods 
for fitting the model. In both cases, each model provided reasonable accuracy but the 
model was improved to some extent by adjustment of the statistical method. On the one 
hand, the mixed-effect seemingly unrelated regression method for SB distribution and, 
on the other hand, the generalized linear model including the moment estimator for the 
Weibull distribution can be regarded as the most sophisticated methods applied for the 
present thesis, and they also showed superior performance. More obvious differences 
between statistical approaches have been found in the case where the parameter prediction 
model could not explain much of the variation in the dependent variables (e.g., Cao 
2004).

Inputting of data by means of the known stand characteristics played a slightly •	
controversial role. The common FMP data were quite effective and evidently the 
minimum requirement for reliability in volume characteristics. Inclusion of additional 
input variables could improve the model’s accuracy, but, unfortunately, improvement 
was clearly evident in the accuracy of the included variable only. Thus, including stem 
number as a calibrating variable for advanced stands improved the accuracy of the 
stem number generated but not, for example, that of the dominant tree characteristics, 
and, likewise, inclusion of dominant tree variables did not improve the accuracy of the 
stem number generated. Nevertheless, including the stem number (an important sum 
characteristic) resulted in improved accuracy also in the volume characteristics. On the 
other hand, the additional dominant height proved advantageous whereas the dominant 
diameter turned out to be detrimental in prediction of the structure of young stands by 
means of the BLUP application for the basal area-dbh distribution models. As a curiosity, 
including arithmetic mean dbh and basal-area-median dbh simultaneously showed an 
interesting ability to reduce bias and RMSE in most of the validated characteristics (see 
Paper V: Tables 8–11).

The Näslund’s height curve provided an excellent basis for characterising height–•	
diameter relationship. Successful linearization required taking the logarithm of both 
sides, explained parameters and explaining stand characteristics. The Näslund’s curve 
could be accurately predicted/calibrated with the common forest management planning 
input data (with D,H or d

gM
,h

gM
 giving the slope), and, in particular, with additional 

knowledge of the dominant tree characteristics, the bending of the curve was captured 
by the model. Thus, choosing Näslund’s function provided simplicity in the fitting of the 
curve to sample tree data, in model formulation as well as in model application.
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