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ABSTRACT

Individual tree detection (ITD) - based forest inventory using the airborne laser scanning
(ALS) data suffers from under-estimation problem, which arises mainly from the
suppressed trees that are difficult to be detected from the air. Uncertainty of tree-level
estimates, like tree height, diameter at breast height (DBH) and the modeled stem volume
also contributes to the inaccuracy of the plot-level estimates. The doctoral work tackled the
under-estimation problem from the perspectives of both tree and plot levels. At the plot
level, suppressed trees were retrieved from the left tail of the tree size distributions derived
from the area-based approach. At the tree level, DBH of single trees were predicted using
the quantile-based nearest neighbor imputation.

Area-based approach (ABA) - based forest inventory is able to provide accurate and
unbiased plot-level estimates of forest attributes, such as total stem volume. K-MSN
method is used in the ABA to simultaneously predict the forest attributes of interest. If tree-
level field measurements are available in the sample plots, it’s possible to apply the k-MSN
method to predict tree size (DBH or height) distributions for the sample plots. The
combination of the ITD-derived tree size distributions with the ABA-derived distributions
makes it possible not only to improve the ABA-derived saw log estimates, but also to
retrieve the suppressed trees for the ITD-derived tree size distributions. The replacement
and the histogram matching were utilized to calibrate the tree size distributions. The results
showed that after the calibration, the RMSE of the predicted total volume decreased by 2 %,
and the bias was negligible. The quantile-based nearest neighbor imputation was able to
predict the DBH as accurate as the benchmarking method, the k-MSN. It utilized the ALS-
measured tree height and crown diameter as the two predictor variables and achieved even
better accuracy than the k-MSN method for larger trees with diameters 16 cm. The
improved DBH estimates also benefit stem volume estimation, which led to the improved
tree- and plot-level estimations of the stem volume.

Keywords: diameter distribution, height distribution, suppressed trees, nearest neighbor,
cut point detection, stem volume
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1 INTRODUCTION

The purpose of forest inventory is to obtain reliable and unbiased estimates of forest
attributes. Forest inventory is conducted at different scales or levels, the most detailed of
which is the tree-level inventory for the purpose of long-term management planning
(Siitonen 1993). Tree-level description of forest attributes has a greater flexibility in
constituting a larger scale description by up-scaling tree-level estimates into plot, stand, and
even larger scales. Detailed tree dimensions measured at a given accuracy facilitate the
forestry applications such as growth modeling and bucking simulation (Vauhkonen 2010).
In nowadays when the automation prevails, remote sensing data acquired from the air are
widely used to automatically detect single trees in the forest stands. Studies on the
interpretation of aerial photographs for single tree information started in the 1990’s
(Pollock 1994; Gougeon 1995; Larson 1997; Brandtberg 1999; Pitkänen 2001, Korpela
2004). Individual tree detection (ITD) algorithms and techniques (Hyyppä and Inkinen
1999; Holmgren et al 2003) were also developed to facilitate the tree-level analysis using
the high resolution airborne scanning data.

Airborne laser scanning (ALS) data have attracted forest researchers’ attention since
late 1990’s. Since the ALS data are able to depict the three dimensional (3D) information
about tree crowns, they are considered to favor forest applications better than other remote
sensing data do (Hyyppä and Hyyppä 1999; Magnussen 2006; Maltamo et al. 2006a). High-
density ALS data are able to explicitly describe the crown shape of single trees, and they
are also able to provide more information about tree stems and lower blanches when the
pulses penetrate deeper towards the ground. Segmentation-based tree crown delineation is
normally applied to detect single trees, and tree attributes like height and crown variables
are obtained directly from the measurement of the segments. The uncertainties of the tree
attributes are accumulated when they are used as predictor variables in the allometric
equations of DBH (Kalliovirta and Tokola 2005) and of stem volume (laasasenaho 1982).
Tree-level uncertainties have a great impact on the plot-level accuracy of the forest
attributes, despite of the up-scaling methods. The errors in the single-tree remote sensing
propagate through the processing chain of the system (Korpela 2006). Nevertheless, the
impact of undetected trees on the plot-level accuracy should not be underestimated.

Suppressed trees beneath the dominant layer are difficult to be detected by the ALS data.
Canopy height model (CHM), which is a surface model of the point cloud, is usually used
in the segmentation to detect trees (Persson et al. 2002; Vauhkonen et al. 2010). In multi-
storied forests, the CHM mainly describe trees in the dominant layer, whereas in the open
areas, it may contain some information about the suppressed trees. Detection algorithms
based  on  the  CHM  inevitably  lead  to  weak  detectability  of  the  suppressed  trees  for
vertically complex forests. Yao et al. (2012) integrated CHM-based segmentation with 3D
segmentation techniques to detect trees, and improved the detection rate from 48% to 60%.
Hyyppä et al. (2012) utilized the last pulse data for tree detection and correctly matched 6%
more trees than when the first pulse was used. Lähivaara et al. (2014) utilized the same data
as the doctoral work, and developed a Bayesian approach to detect trees by fitting multiple
3D crown height models to point cloud data. They achieved an improvement in detection
rate from 53% to 70%. Amelioration in the detection algorithms helps to detect more
suppressed trees, but still their detectability is constrained by the density and spatial pattern
of trees. Detection of the suppressed trees continues to be a problem, especially for multi-
storied forests. Tree-level uncertainties and undetected trees work together, and result in
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under-estimation for the total forest attributes in the ITD-based forest inventory. This is a
systematic under-estimation that stems from the intrinsic mechanism of the ITD system.
Contribution of the suppressed trees is not counted in, so that mean forest attributes, such as
mean tree height, are over-estimated, while total forest attributes, such as total stem volume,
are under-estimated, 12% as the relative bias at worst according to Korpela (2004).

The ALS-based forest inventory has become realistic and feasible since 2002 when
Norway started applying the area-based approach (ABA) (Næsset 2002) in the ALS-based
forest inventory. Area-based approach is an alternative method to the individual tree
detection. It is able to provide accurate and unbiased plot- and stand-level estimates of
forest attributes (Næsset 2004; Holmgren 2004; Maltamo et al. 2006b). Non-parametric k-
MSN method is usually used in ABA to simultaneously predict forest attributes of interest,
because it is not restrained by the normality assumption and the number of predictors.
Diameter distributions can also be accurately predicted using the area-based approach
(Maltamo and Gobakken 2014). Diameter distribution is an important indicator of the stand
vertical and horizontal structures that are related to forest biodiversity (Maltamo and
Gobakken 2014). The shape of diameter distributions corresponds to the development class
of the stand and it can be uni-modal, multi-modal, irregular or decreasing (Esseen et al.
1997). Traditional studies based on the field measurement of stand attributes (Magnussen
1986; Shiver 1988; Tham 1988) explored the potential of the theoretical probability density
functions such as Weibull distribution and Johnson’s SB distribution, in describing the
stand dynamics in different types of forests. They found that the theoretical distributions
were not capable to describe the multi-modal and irregular shapes of diameter distributions.
Cao and Burkhart (1984) developed a segmented approach of the Weibull distribution, and
Border et al. (1987) presented a percentile-based method, both for a more flexible
description of the diameter distributions. Recently, Zhang et al. (2001), Liu et al. (2002)
and Zasada and Cieszewski (2005) utilized the mixture distribution approach to model the
irregular and multimodal diameter distributions of the mixed and uneven-aged forest stands.

Among the ALS-based parametric studies for diameter distributions, Gobakken and
Næsset (2004, 2005) used the ALS metrics as the predictors, and applied the parameter
prediction and parameter recovery methods to predict the Weilbull parameters. Maltamo et
al. (2006b) and Holopainen et al. (2010) used the ABA-derived estimates of the mean stand
attributes as the predictors, and they applied the existing parameter prediction models to
predict the diameter distributions. Non-parametric method is an alternative of the
parametric prediction of diameter distributions. Packalén and Maltamo (2008) applied the
k-MSN method to predict the species-specific diameter distributions using the ALS and
optical data. They concluded that the k-MSN method was able to predict as accurate
diameter distributions as the Weibull distribution, but it was favored due to the possibility
to predict multi-modal diameter distributions. ABA-derived diameter distribution is
accurate enough when taken as a whole in the calculation of other forest attributes, but not
accurate enough if details are concerned. This explains why timber assortments are
predicted in ABA with lower accuracies than the total stem volume (Holopainen et al.
2010).

The combination of the individual tree detection with the area-based approach inspired
some studies, from the perspective of tree size distributions. Maltamo et al. (2004) retrieved
the undetected trees from the theoretical Weilbull distributions, the parameters of which
were regressed with the stand-level estimates derived from the ITD-detected trees.
Mehtätalo (2006) fitted a continuous distribution function to the observed crown areas, in
order to recover the suppressed trees. Lindberg et al. (2010) applied the k-NN method to
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predict the ABA-based target distribution matrix at plot level, according to which the ITD-
derived tree list was calibrated. These studies either improved the ITD-derived estimates of
total volume and stem number, or resulted in a tree list consistent with the unbiased ABA-
derived estimates.

Tree size distribution derived from the ITD is a summation of all trees that are detected
from the air. DBH of these trees need to be predicted from the ALS-measured tree
attributes, like tree height and crown dimensions. The ITD is able to derive pretty intact and
accurate right tail of the distribution, which consists of larger trees in the dominant layer.
The left tail is truncated and fragmented, with the smallest trees missing, as well as some
trees in the intermediate layer. The combination of the ITD-derived distribution with the
ABA-derived distribution makes it possible to improve the ABA-derived saw log estimates.
Besides, for the ITD-derived distribution, it enables to retrieve the suppressed trees from
the ABA-derived distribution. Namely, the left tail of the calibrated distribution comes
from the ABA-derived distribution, whereas the right tail comes from the ITD-derived
distribution. The calibrated tree size distribution is assumed to generate more accurate
estimates for the total stem volume of forest stands.

The objective of the doctoral work was to improve the plot-level estimates of forest total
stem  volume  by  combining  the  ABA  and  ITD,  the  two  main  ALS-based  approaches  in
forest applications. It tackled the under-estimation problem of the ITD system from two
aspects. One was focused on the improvement in tree-level estimates, such as DBH and
stem volume, the other worked with the tree size distributions derived from both
approaches, and sought the improvement by combining the two distributions. The explicit
objectives of the sub-studies were detailed as follows:

I. To automatically detect the proper cut point which divides diameter distribution
into left tail and right tail for each sample plot, based on the diameter distributions
derived from both approaches. To calibrate the ABA-derived diameter distribution
with the ITD-derived diameter estimates, for more accurate diameter distributions
and total volume estimates.

II. To improve the calibration scheme based on the height distributions. To examine
the calibration effects on the suppressed trees. To explore the necessity of the
calibration.

III. To develop a quantile-based nearest neighbor imputation for DBH prediction,
using the ALS-measured tree height and crown diameter as predictors.

2 STUDY AREA AND MATERIAL

2.1 Study area and field measurements

All three sub-studies were focused on a managed boreal forest in Kiihtelysvaara, in eastern
Finland (62°31’ N, 30°10’ E), where the main tree species are Scots pine (Pinus sylvestris),
Norway  spruce  (Picea abies) and deciduous trees. The climate is sub-arctic with high
humidity.

A total  of  5747 trees  in  79  square  sample  plots  (Figure  1)  were  measured  in  the  field
during May-June 2010 for tree species, DBH, and height. Size of the sample plot was
determined by the mean tree size and stand development class (Table 1), and it varied from
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20, 25 to 30 m for the side length of the square plot.  All trees were measured if DBH  4
cm or height  4 m. ITD-detected trees were first geo-referenced, and undetected trees were
registered using the least square adjustment (Korpela et al. 2007) based on the angle and
distance from the undetected tree to the detected trees. Stem volumes were calculated by
the species-specific equations presented by Laasasenaho (1982) using DBH and tree height
as predictors. Forest attributes such as basal area, stem number, diameter and height of the
basal area median tree, stem volume, saw log and pulpwood volumes, were calculated and
scaled to the hectare level. The average total volume at plot level was 197.59 m3/ha, and the
average stem number was 1258 /ha.

2.2 ALS data

Two separate ALS datasets were utilized in the doctoral work. High density ALS data were
collected on June 26th 2009 using an Optech ALTM Gemini laser scanning system,
approximately 600 m above the ground level. Along with a field of view of 26 degrees and
a pulse repetition frequency of 100 kHz, the scanner setup resulted in a nominal sampling
density of about 12 measurements per square meter, and a swath width of approximately
320 m. Side overlap was 55%, to make sure that each location was measured from two
flight lines, namely two sides. Multiple echoes were recorded for each pulse. Low density
ALS data were collected on July 18th 2009 using the same Optech ALTM Gemini laser
scanning system, approximately 2000 m above the ground level. The swath width of
approximately 1050 m and the sampling density of about 0.65 measurements per square
meter were obtained using a field of view of 30 degrees, side overlap of 20% and pulse
repetition frequency of 50 kHz.

Figure 1. Sample plots in the study area.
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Table 1. Range and mean value of the tree attributes of three categories of sample plots.

Plot size (m) Stem number Height (m) DBH (cm)

20 33-74-115 9.06-12.29-17-62 8.78-12.14-19.05
25 32-72-160 8.70-14.11-20.70 8.14-14.88-21.84
30 42-74-118 11.41-17.68-24.11 12.11-19.11-28.40

3 METHODS

The outlines of the methods involved in all papers were presented in Figure 2.

Figure 2. Flowchart of the calibration methods of the ABA-derived tree size distribution with
the ITD-derived tree size distribution.
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3.1 ABA-based prediction of tree size distributions using the low density ALS data

3.1.1 ALS metrics as predictor variables

Low density ALS data were used to extract the ALS metrics in the area-based approach.
After generating the Digital terrain model (DTM) with a pixel size of 0.5 m by taking the
mean value of the ground points within the pixel, the aboveground heights of the ALS
points were obtained by subtracting the DTM from the orthometric heights of the ALS
points. Canopy hits, namely the ALS points with height  0.5 m, of the first and last returns,
were used respectively to calculate the ALS metrics. Canopy height percentiles at 0, 1, 5,
10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 99 and 100 %, as well as proportional canopy
densities for these percentiles, were calculated. The ratio of canopy hits to ground hits, the
mean height of the canopy hits, and the standard deviation of the canopy hits were also
computed. A total of 64 ALS metrics were extracted for variable selection and modeling.

3.1.2 Variable selection

LASSO (Least Absolute Shrinkage and Selection Operator) (Tibshirani 1996) is a method
for variable selection. The entire path of LASSO solutions was computed with the least
angle regression (LAR) (Efron et al. 2004), using the package LARS in the R statistical
computing environment (http://www.r-project.org, 2014). By constraining the sum of the
absolute values of the estimated coefficients no bigger than the bound s (s  0), some of the
coefficients are shrunken to zero. When s varies from zero to infinity, LASSO has different
solutions, one of which is the result of the best s  that leads to the optimized selection of
predictors. Ten-fold-cross-validation was applied in the study to solve the best s  for each
dependent variable (total and species-specific stem volumes, saw log and pulpwood
volumes, stem number, basal area, diameter and height of the basal area median tree).
Predictors selected for each dependent variable were integrated in two different ways that
resulted in three groups of predictors, including the original set of predictors.

3.1.3 Prediction of tree size distributions using the k-MSN

Two groups of dependent variables, denoted as Y1 and Y2 were tested in the k-MSN
imputation (Moeur and Stage 1995; Packalén and Maltamo 2008). Y2 consisted of all Y1
dependent variables except saw log and pulpwood volumes. These two groups were further
subdivided into total variables and species-specific variables. The best model was to be
selected as the final MSN model to predict tree size distributions. The empirical tree size
(DBH or height) distributions (denoted as df 	and	hf ) of all reference plots are
required in the k-MSN imputation. They were specified by the discrete frequency function
of  the  field-measured  DBH  or  height  in  each  sample  plot,  with  class  width  of  1cm  for
diameter distributions, and 1m for height distributions. The empirical tree size distributions
were expanded to the hectare level by multiplying the area factor, the ratio of one hectare to
the plot area. The predicted distribution for the target plot is the distance-weighted mean of
the empirical distributions of the most similar neighbor (MSN) plots, which were searched
using the R package yaImpute. The distance from the target plot to the reference plots were
calculated based on the Canonical Correlation Analysis and three MSNs were utilized in the
imputation. The ABA-derived diameter and height distributions were obtained
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simultaneously and expanded to the hectare level and denoted as df 	and	hf , with class
widths identical with the empirical distributions.

3.2 ITD-based prediction of tree size distributions using the high density ALS data

3.2.1. Tree delineation and measurement of tree height and crown diameters

The segmentation was based on the canopy height model (CHM) produced with the high
density ALS data. The CHM was first smoothed using height-based filtering (Pitkänen et al.
2004), and searched for local maxima. Watershed segmentation was applied to delineate
tree crowns (segments) around the local maxima. The maximum height in each segment
was deemed tree height, and the tree position was obtained from the X and Y coordinates of
the pixel that had the maximum height value. The maximum crown diameter and the other
that took the direction perpendicular to the former were measured for each segment.

3.2.2 Prediction of height distributions

All ALS trees that located within a certain distance from the field tree were associated with
the field tree. The distance was a function of the DBH of the field tree (Olofsson et al.
2008). The linked ALS tree was determined by the shortest Euclidian distance (Olofsson et
al. 2008) between tops of the field tree and all associated ALS trees. In case that the same
ALS tree was linked to several field trees, tree height difference was calculated to select the
pair that had the least difference. All tree pairs that had height difference  4m were
excluded. After the ALS trees were linked with the field trees, the ALS-measured tree
heights were calibrated with the field-measured heights using spline regression (Harrell
2001), with 5 knots at the quantiles of 0.05, 0.275, 0.5, 0.725, and 0.95. The ITD-derived
height distribution for each sample plot was specified by the discrete frequency function of
the calibrated ALS-measured tree heights, with class width of 1m.  It was expanded to the
hectare level, and denoted as hf .

3.2.3 Prediction of diameter distributions

Since DBH cannot be directly measured from the delineated tree crowns, the ITD-derived
diameter distribution depends on the prediction of DBH using the variables that can be
directly measured. The allometry-based modelling method used here was a quantile-based
nearest neighbor method, in the assumption that a specific quantile of the nearest neighbors
represents the target object. The nearest neighbors were determined by the ALS-measured
tree height. The probability value that specified the quantile was determined by the ALS-
measured crown diameter calibrated with the DBH. All variables used here were in relative
magnitude, in order to offer a natural input to the probability value, and also to facilitate the
calibration of crown diameter with the DBH. Relative value was defined, for example, as
the ratio of the crown diameter of a tree to the maximum crown diameter in the target
dataset. After DBH prediction, the ITD-derived diameter distribution was specified by the
discrete frequency function of the predicted DBHs of the ITD-detected trees, with class
width of 1 cm. It was then expanded to the hectare level, and denoted as df  for later
reference.
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3.3 Calibration methods that combine the ABA and ITD-derived tree size
distributions

3.3.1 Detection of the cut point for diameter and height distribution respectively

The cut point used in this study was a unique integer diameter or height value that
distinguishes trees with larger diameters or heights from trees with smaller diameters or
heights in each sample plot. The automatic detection of the cut points was based on the
ITD-derived tree size distributions, and was realized in a two-step procedure. The first step
examined the continuity and reliability of the ITD-derived distributions and selected the
candidate cut points for each plot. Reliability was judged with the help of the empirical
distribution. Continuity was recognized if the majority of the sequential five classes have
trees, starting from a reliable class (including itself). The second step examined whether the
candidates can be seem from the air. Sigmoid function (Korpela 2004, Mäkinen et al. 2010)
that modeled the detection probability of a tree from the air is a function of the relative
height of the tree. The relative height was defined as the ratio of the tree height to the
maximum height of the sample plot. For height distributions, candidate cut points was used
directly in the sigmoid function, whereas for diameter distributions, tree height was
modeled for each candidate cut point, using the nonlinear Korf H-D function fitted to all
field-measured trees in the corresponding sample plot. In each sample plot, the smallest
candidate that had 0.95 detection probability was chosen as the final cut point.

3.3.2 Replacement

The purpose of replacement is to constitute the calibrated distribution with the left-tail of
the ABA-derived distribution and the right-tail of the ITD-derived distribution. The cut
point detected for each sample plot was used to separate the left and right tails, and the cut
point is the starting point of the right tail. The intermediate result here was denoted as f
with a suffix d or h added ahead to indicate diameter or height. Since the ABA-derived
distributions obtained trees from the most similar neighbor plots, they sometimes had larger
trees than their own. These trees were referred to as the ABA tail in the study. After the
replacement, five different ways to deal with the ABA tail resulted in five different
calibrated distributions. The total basal area was calculated for all trees in the ABA tail, and
was then distributed to the anterior part, namely f . Table 2 listed the five differently
calibrated distributions and how they were derived.

Table 2. Five differently calibrated tree size distributions after the replacement.

Abbreviation Description
f 														 ABA tail was ignored
f 													 ABA tail was allocated evenly to the right tail of f
f 													 ABA tail was allocated evenly to the whole section of f
f 													 ABA tail was allocated proportionally to the right tail of f
f 													 ABA tail was allocated proportionally to the whole section of f
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Table 3. Three calibrated diameter distributions following the histogram matching.

Abbreviation Description
f 											 Intersection of the target and the reference was used as the turning point
f 											 Cut point was used as the turning point
f . 							 5 cm after the cut point was used as the turning point

3.3.3 Histogram matching

Histogram matching (Gonzalez and Woods 2002) was only used for diameter distribution
study. The ABA and ITD derived diameter distributions were converted to the cumulative
probability functions first, and were used as the reference R(j)  and the target T(i)
respectively in the histogram matching. After matching the target with the reference, we
obtained the calibrated target which was later converted into the diameter distribution or
histogram. For discrete frequency function, it’s possible to find two points j and j + 1 in
the reference for a given T(i) in the target, and it’s also possible to utilize the distance
between i and j to decide how much the target should resemble the reference. The essential
idea was that the target should resemble the reference for the left tail, but it had more
liberty in the right tail. The cut point detected in 3.3.1 was first tested here as the turning
point, from which the target don’t have to resemble the reference. After a careful inspection
of the calibrated target of all sample plots, 5 cm after the cut point was further tested. And
the intersection of the target and the reference was also tested for this purpose. Table 3
listed the three calibrated diameter distributions.

3.3.4 Height-to-diameter matrix for height distributions

In the height distribution study, to calculate the basal area for trees in the ABA tail and the
total stem volume from the height distribution, DBH has to be predicted for trees of the
mean heights in all height classes. Instead of predicting DBH within each own system, a
standard height-to-diameter matrix that took plots as rows and height classes as columns,
was established. The field-measured trees were used to generate each element of the matrix.
For each sample plot, all field-measured trees that fall in each height class were extracted;
the mean DBH of these trees was filled into the corresponding height class, as the predicted
DBH for the mean height tree of the class. The preliminary height-to-diameter matrix had
some elements filled with no data because no field trees existed in these height classes.
Second, DBH was modeled for these no data elements, as a function of tree height, using all
field-measured trees.

3.4 Assessment methods

The accuracies of the predicted distributions were assessed using the Reynolds error index
(Reynolds et al. 1988) (Eq. 1), and the RMSE and bias of the predicted total stem volume
(Eq. 4 and 5). In diameter distribution study, the sum of powers of diameters (Maltamo
1997) (Eq. 3) was used as the approximation of total stem volume, whereas in height
distribution study, species-specific volume equations by Laasasenaho (1982) were applied
to predict stem volume for single trees. The entire growing stock, the saw log fraction and
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the pulpwood fraction were respectively calculated. Diameter value 17 cm and height value
16 m were used to partition the saw log and pulpwood fractions.  Packaléns error index
(Packaléns and Maltamo 2008) (Eq. 2) was also used to assess the ABA-derived diameter
distributions for determining the final MSN model.

EI = 100 ×
f f

N 																																																																																														(1)

EI = 0.5 ×
f
N

f
N

																																																																																																(2)

where c is the diameter class, and c = 1, 2, … , m. f  and f  are field-measured and predicted
stem frequency in the diameter class c , respectively. N  and N  are field-measured and
predicted total stem number per hectare.

D = d × f 																																																																																																																		 (3)

where d  is the mean diameter of the diameter class c. p is the power, p = 1, 3. f  is the
stem frequency in the diameter class c, and c = 1, 2, … , m.

RMSE =
(V V )

n 																																																																																																	(4)

where i is the plot index, and i = 1, 2, … , n.	V  and V  are the empirical and predicted total
stem volume in plot i in the height distribution study, but in the diameter distribution study,
they are D  of the empirical and predicted diameter distributions.

Bias =
(V V )

n 																																																																																																										 (5)

4 RESULTS

4.1 ABA-derived tree size distributions

For the ABA, the best MSN model that had the least Reynolds and Packalén error indices
was selected as the final MSN model to predict both the diameter and height distributions.
It had 49 predictor variables and species-specific attributes (Y2) as response variables. Fig.
3 presented an example of the ABA-derived diameter and height distributions, using the 3rd

sample plot which was also used to demonstrate the calibrated distributions in the following
figures. The ABA-derived tree size distributions were able to depict the general shape of
the empirical distributions, such as the number of summits. But they were not accurate
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enough if the pulpwood and saw log fractions were inspected separately. The loss of trees
around 20 cm and 20 m was compensated by trees in the ABA tail,  which came from the
most similar neighbor plots of this specific sample plot.

4.2 ITD-derived tree size distributions and cut points

Figure 4 presented an example of the ITD-derived diameter and height distributions, using
the same sample plot as Figure 3. As assumed, the ITD failed to detect the suppressed trees.
However, it  did a pretty good prediction for the dominant trees. It’s very possible that the
diameters of the largest trees were underestimated. Table 4 listed the accuracies of the
predicted DBH using the quantile-based nearest neighbor method. Larger trees were
predicted with worse accuracy and precision. The heights of the largest trees, after
calibration, were very close to the empirical values. The bin sizes used in the study were
very small, 1 cm for the diameter distribution and 1 m for the height distribution. If larger
bin sizes were used, the visual similarity between the predicted and the empirical would be
stronger. Each sample plot had its own cut points. For this plot, the diameter cut point was
17 cm, and the height cut point was 19 m. The cut point indicated the upper bound of the
class, that’s to say, the calibration started from the classes of 16-17 cm and 18-19 m. The
cut points were drawn in the middle of the classes in Figure 4 and 5. There is still room for
improvement of the automatic detection algorithm for the cut point. Compared with the
ABA-derived tree size distributions, the ITD derived much more accurate diameters and
heights for dominant trees, which mostly contributed to the saw log volume.

Figure 3. ABA -derived diameter and height distributions.
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Figure 4. ITD -derived diameter and height distributions.

Table 4. Accuracy of the predicted DBH for all trees and larger trees with DBH 16 cm.

total pine spruce deciduous
Trees RMSE (%) Bias (%) RMSE Bias RMSE Bias RMSE Bias

All 3.01 (15.64) -0.07 (-0.38) 2.77 0.04 3.20 0.80 3.89 -1.82
16 cm 3.10 (13.63) 0.41 (1.82)  2.89 0.40 3.31 1.00 4.20 -0.95

4.3 Calibration of the tree size distributions

Figure 5 presented the optimally calibrated diameter and height distributions for the
example plot, according to the Reynolds error index and the total volume estimates. The
diameter distribution was the result of f  , following the histogram matching. The
calibrated distribution resembled the reference distribution, which was the ABA-derived
distribution very much. The height distribution was the result of f , following the
replacement method.

4.4 Assessment of the tree size distributions

In paper I,  the sum of the powers of diameters was calculated as the approximation of the
total volume. The relative RMSE and bias of the two basic and eight calibrated diameter
distributions for the entire growing stock, pulpwood and saw log fractions are presented in
Table 5. For the approximated total volume estimates, f .  improved the accuracy from
21% (the best between the ABA and ITD) to 19%. Such improvement was brought by the
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improvement in both the pulpwood and saw log fractions. At the same time, the calibration
decreased the bias of the ITD estimates.

In paper II, Laasasenaho (1982)’s volume equations were used to calculate the stem
volume. Table 6 presented the accuracies of the total volume and pulpwood volume
calculated from the height distributions. All calibrated height distributions lowered the
RMSE of the total volume by 2% the most. The improvement in the pulpwood fraction was
larger.

Figure 5. Calibrated tree size distributions.

Table 5. Accuracies of the total volume, pulpwood and saw log fractions generated from the
diameter distributions (improvements are underlined).

Total volume Pulpwood volume Saw log volume

RMSE % Bias % RMSE  % Bias % RMSE  % Bias %

f 21.41 2.38 49.37 -0.93 28.84 3.03
f 25.72 16.35 50.32 32.05 26.83 13.24
f 22.97* 6.89 41.64** 0.52 27.43 8.16
f 21.82* -3.05 42.65 -10.61 26.48 -1.55
f 21.18* -0.09 44.78 -16.18 25.84 3.10
f 21.98* -3.23 42.34 -9.03 26.69 -2.08
f 21.75* -2.43 43.45 -11.68 26.40 -0.60
f 19.79* 4.99 47.42* -5.36 26.01 7.04
f 21.05 -9.23 49.83 5.23 26.84 -12.09

f .  18.60* -1.53 47.69 -2.25 23.78 -1.39
a. * indicates residual of fitd is significantly greater than that of the calibrated distributions (p 0.05).
b.  *  indicates residual of faba is significantly greater than that of the calibrated distributions (p 0.05).
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Table 6. Accuracies of the total volume and pulpwood fraction calculated from the height
distributions.

Total volume Pulpwood volume

RMSE % Bias % RMSE % Bias %

f  28.84 -6.23 60.21 2.57
f  18.66 10.39 61.25 44.60
f  16.70 3.86 47.13 14.70
f  17.41 -0.76 43.74 10.40
f  16.71 0.76 46.18 5.10
f  17.54 -0.93 43.57 10.45
f  17.27 -0.41 45.46 9.01

5 DISCUSSION

The doctoral work focused on the accuracy of the total volume or the approximated total
volume in the ITD-based forest inventory, which were explored from two levels. The tree-
level study (Paper III) emphasized on the accuracy of the predicted DBH and stem volume
of the ALS-detected single trees. The plot-level studies (Paper I and II) paid close attention
to the total volume estimates generated from the tree size distributions, which were the
union between the ABA and ITD-derived tree size distributions. Since the total volume
generated from the tree size distribution is a summation of all trees, tree-level accuracy and
the presence of all trees influence the plot-level accuracy of the predicted total volume. In
the ITD system, tree detection rate is an essential parameter to indicate the forest vertical
structure and the possible prediction accuracy. Single-storied forests, with a large detection
rate, are possibly accurately estimated, while the multi-storied forests, with around fifty
percent of trees detected, are certainly underestimated. Whether trees are detected and how
many are detected by the ALS data has a great impact on the plot-level accuracy.

Two plot-level studies developed the calibration procedures, in which un-detected trees
in the ITD system were retrieved from the ABA-derived tree size distributions. The results
showed that more accurate tree size distributions and more accurate total volume estimates
were obtained. The improvement was contributed mostly by the pulpwood fraction, namely
the suppressed trees that were theoretically undetectable from the air. Two calibration
methods were tested in the studies, and they have different mechanisms. The calibration
result of the replacement method largely depends on the accuracy of the ITD, because all
dominant trees detected in the ITD system are kept in the calibrated tree size distributions.
The calibration result of the histogram matching is more flexible in that, after the turning
point, at least three alternatives are available. They are following the ITD, following the
ABA, and going between the ABA and the ITD. Paper I explored the last alternative, which
was a compromised scheme for the dominant trees between the ABA and the ITD. The
flexibility in the histogram matching could be further explored in the future studies on the
species-specific calibrations.
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The cut point detection algorithm was an automatic procedure, which examined the
reliability and continuity of the ITD-derived tree size distributions first.  The reliability was
examined with the help of the empirical distributions in the studies. More efforts could be
made in the future to realize the same purpose without the help of the empirical
distributions, because for wider forest area that is not visited in the field campaign, the
empirical tree size distributions are not available. The continuity is examined because the
continuous detection of trees is needed all along the distribution, especially from the cut
point on. Finally the visibility of the tree of the same size of the cut point from the air was
examined. The proposed methods for diameter and height distributions were able to detect
good enough cut points for each sample plot, and based on these cut points, the plot-level
calibrations led to more accurate tree size distributions.

The tree-level stem volume accuracy depends on the accuracies of tree height and DBH,
if they are used as predictors for the stem volume. Tree heights can be derived from the
ALS data very accurately, especially after the calibration with the field-measured tree
heights. DBH of the larger trees is difficult to be accurately predicted because these trees
grow in diameter but not much in height any more. The joining of crown variables in the
DBH prediction helps to improve the DBH accuracy. The quantile-based nearest neighbor
imputation developed in the Paper III utilized the ALS-measured tree height and crown
diameter to predict tree DBH. It achieved the same accuracy as the k-MSN method that was
commonly used to predict tree-level attributes. Compared with the k-MSN method, the
quantile-based nearest neighbor method used much fewer predictor variables, and obtained
slightly better accuracy for trees with diameter  16 cm. Furthermore, based on the
predicted DBH and the ALS-measured tree height, the quantile-based method resulted in
better accuracy in the tree-level stem volume than the k-MSN method did. Alternatively,
the stem volume can be directly predicted in the k-MSN method, together with other tree
attributes, such as DBH (Vauhkonen et al. 2013). The direct prediction is assumed to obtain
better accuracy for the stem volume, due to the non-presence of the modelling errors. The
error propagation in the single-tree remote sensing due to indirect prediction of the stem
volume was well studies in Korpela (2006), and they also studies the error contributed by
the species recognition, which has not been investigated in this doctoral study.

Previous diameter distribution studies (Maltamo et al. 2000; Kangas and Maltamo 2000)
based solely on the field-measured data compared the quantile-based diameter prediction
method with the Weibull distribution method, and obtained the predicted total volume at
the best accuracy of about 6% as the relative RMSE. They concluded that the quantile-
based method was able to describe more diverse forms of the diameter distributions, and
predicted the stand characteristics at better accuracy than the Weibull distribution method.
Siipilehto (2011), based on the field-measured data again, compared the Weibull
distribution with the Johnson’s SB distribution in predicting the forest stand structure
variables. The RMSE% of the predicted total stem volume was about 2% for the advanced
stands, but it varied from 10 to 24% for the young stands. These studies utilized the true
stand attributes to construct models, free of errors from measurement, sampling and other
sources. They were able to achieve a RMSE usually below 10%. When the models are
applied in the real world forest applications where the stand attributes are visually estimated,
the RMSE will undoubtedly increase. In the study by Haara and Korhonen (2004), visually
assessed stand attributes were used to predict diameter distribution and volume. They
reported 24.8% as the RMSE, which is comparable or even higher than our ALS-based
studies.  Besides, the stand-level studies produce much more accurate estimates than the
plot- level studies (Packalén and Maltamo 2007).  This doctoral work was made at the plot
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level, and it’s difficult to have a direct comparison with the stand-level field measurement-
based studies.

Compared with the studies focused on developing the tree detection algorithms (Wang
et al. 2008; Yao et al. 2012; Lähivaara et al. 2014), This doctoral work aimed at the
unbiased estimates for the purpose of the ITD-based forest inventory. Maltamo et al. (2004)
manually selected the cut point, which was realized automatically in this doctoral work.
Compared with the theoretical Weibull distribution that was used in Maltamo et al. (2004),
the ABA-derived distribution is able to describe the multi-modal distributions. This means
the left tail of the ABA-derived distribution depicts the possible summit around the smaller
trees. Lindberg et al. (2010) obtained a calibrated tree list that was consistent with the
ABA-derived estimates. They effectively removed the bias but the increase of accuracy was
not guaranteed. This doctoral work, based on the ITD-derived dominant trees, either
transplanted the ABA-derived suppressed trees, or made slight adjustment to the left tail of
the ABA-derived distributions. It was able to increase the accuracy while decrease the bias.
In fact, it also took the necessity of the calibration into account for each sample plot, in
paper II. The calibration was abandoned for the sample plot, whose most similar neighbors
in the k-MSN imputation didn’t reflect its real structure. A threshold was set here to
indicate the unnecessary calibration for the sample plot. The ITD-derived tree size
distribution was therefore kept and delivered to the calibrated system. This diminished the
obvious side effect of the calibration and navigated the calibration into the direction that
increased the accuracy. Breidenbach et al. (2010) developed the semi-ITD, which also
tackled the underestimation problem of the ITD. Paper II compared the accuracy of the
estimated total volume with the semi-ITD accuracy (Vauhkonen et al. 2013), and concluded
that they were comparable.

The developed calibration procedures in the doctoral work combined the two main
approaches of analyzing the ALS data for forestry applications. The merits of the ABA and
the ITD systems are integrated into the calibrated system that offers more accurate
information about the pulpwood and saw log fractions, and produces unbiased estimates for
the  total  stem  volume.  It  can  be  assured  that  the  calibration  procedures  also  apply  to  the
multistoried forests, because of the ability of the ABA-derived tree size distribution to
describe multi-modal distributions. Future works will address the species-specific
calibration of the tree size distributions, which requires pretty accurate species recognition
that helps to diminish the stem volume modeling error among different species. Stand- level
calibration of the tree size distributions are also of future interest.
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