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ABSTRACT 
 

The precise knowledge of forest structural attributes, such as biomass, logging recoveries and 

quality of the available timber, play an essential role in decision-making, forest management 

procedure planning and in wood supply chain optimization. Remote sensing-aided mapping 

applications are used intensively to acquire required forest resource information. Laser 

scanning (LS) is one of the most promising remote sensing techniques, which can be used to 

estimate forest attributes at all levels, from single trees to global applications. The main 

objectives of the present thesis were to develop LS-based methodologies for mapping and 

measuring single trees. More specifically, new high-density LS-based models and 

methodologies were developed for the prediction of aboveground biomass (AGB), logging 

recovery, stem curve and external tree quality estimation. Multisource remote sensing 

methodologies were additionally introduced for the detailed next generation forest-inventory 

process. Substudies I and II concentrated on developing LS-based biomass models. Total 

AGB was estimated with the relative root mean squared errors (RMSE%) of 12.9% and 

11.9% for Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H.Karst.), 

respectively using terrestrial LS (TLS) -derived predictors in multiple regression modelling. 

TLS-based AGB models significantly improved the estimation accuracy of AGB components 

compared to state-of-the-art allometric biomass models. Airborne LS (ALS) resulted in 

slightly higher RMSE% values of 26.3% and 36.8% for Scots pine and Norway spruce 

compared to results obtained with TLS. The goal of substudies III and IV was to predict 

timber assortment and tree quality information using high-density LS data. Sawlog volumes 

were estimated with RMSE% of 17.5% and 16.8% with TLS and a combination of TLS and 

ALS, respectively. Tree quality is an important factor for accurate and successful timber 

assortment estimation. The use of TLS data showed high potential for tree quality assessment. 

Results in IV showed that trees could be successfully classified in different quality classes 

based on TLS-measured attributes with accuracies between 76.4% and 83.6% depending on 

the amount of quality classes. Substudies V and VI presented new automatic processing tools 

for TLS data and a multisource approach for the more detailed prediction of diameter 

distribution. Automatic processing of TLS data was demonstrated to be effective and accurate 

and could be utilized to make future TLS measurements more efficient. Accuracies of ~1 cm 

were achieved using the automatic stem curve procedure. The multisource single-tree 

inventory approach combined accurate treemaps produced automatically from the TLS data, 

and ALS individual tree detection technique for predicting forest preharvest information. 

Results from diverse forest conditions were promising, resulting in diameter prediction 

accuracies between 1.4 cm and 4.7 cm depending on tree density and main tree species. Each 

substudy (I–VI) presented new methods and results for single-tree AGB modelling, external 

tree quality classification, automatic stem reconstruction and multisource approaches.  

 

Keywords: Remote sensing, Forest inventory, Laser scanning, Precision forestry 
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INTRODUCTION 
 
 

Background 

 

Finnish forest management practices have been based on intensive small-scale forestry 

because forests are mainly privately owned and the average size of forest holdings is 

relatively small (~ 25 ha). In other Nordic countries, e.g. in Sweden and Norway, the average 

size of forest holdings is also relatively small but larger than in Finland: 45-50 ha and 45 ha, 

respectively. The economic value (profitability) of forest holding relies on detailed and up-

to-date information of forest structure and attributes (Holopainen et al. 2014). Accurate forest 

resource information is crucial to individual owners during decision-making, but also for 

forestry organizations, enabling effective forest resource management and wood supply 

optimization. Information on forest resource attributes, e.g. timber assortments, diameter 

distribution, tree quality, biomass distribution, bioenergy potential and yield value are 

required to support decision-making in sustainable forest management. The estimation of 

timber assortments and biomass have been based on modelling approaches because these 

attributes are costly to measure in the field.  

Forest mapping over large areas has typically been based on generalizing field sample 

plot measurements using coarse- or medium-resolution remote sensing (RS) data and other 

numeric map data. Small-scale forest management practices cause mosaic-like forest 

structures. Forest mapping over such land use or vegetation patterns is challenging, especially 

using medium- or coarse-resolution RS data with pixel sizes varying from 30 m (e.g. Landsat 

7) to 250 m (e.g. MODIS). Previous studies have shown that the miss-match between field 

measurement data, an individual pixel of satellite data (Lu 2006) and the scarcity of available 

field data (Hancock et al. 2012) are the main challenges in forest attribute estimation. Coarse 

pixel size in the RS data results in mixed pixels on stand boundaries, leading to a description 

loss of the vegetation structure variability especially when looking at relatively small areas 

(e.g. forest stands of 1–3 hectares or field-measured sample plots).   

Forest resource information systems have advanced to a state where substand-level 

information can be utilized. For example, Finnish Forest Centres currently utilize an 

information system that is based on forest attribute maps with 16 m × 16 m resolution. Forest 

organizations benefit from more detailed forest resource information e.g. when allocating 

various forest management tasks and optimizing the flow of raw materials. Incomplete or 

inaccurate forest information leads to non-optimal forest management decisions and thus 

adds to the expenses (e.g. Holopainen et al. 2010). With accurate forest resource information, 

forests could be seen as standing storages of raw material, which could be harvested based 

on material demand.  

The decisions and optimization of forest management tasks are often based on stand-level 

mean diameter, basal area, height or age, although the most significant attributes describing 

timber quality and log yield is the stem form and diameter distribution (Kilpeläinen et al. 

2011; Uusitalo and Isotalo 2005; Uusitalo 1997). Stand-level forest resource information that 

has been used for management planning for years rarely includes information concerning 

stem form or tree quality, because these attributes cannot be measured cost-efficiently using 

traditional means. Stem form has been modelled using taper curve models (e.g. Laasasenaho 
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1982) with knowledge of tree species, diameters (diameter at breast height (DBH, 1.3 m) and 

diameter at 6 m (D6) and height. Errors in stem form predictions will cause inaccurate 

bucking simulations (Holopainen et al. 2010), which will affect the decision-making process.  

Accurate knowledge concerning the quality of available timber is also essential when 

planning and managing the raw material flow from the forest to the end product. It 

significantly affects the total income amount from timber sales due to quality defects, where 

sawlog-sized trees can be degraded to pulpwood during the harvest. It is more profitable for 

the forest owner to grow high-quality timber when the demand and the pricing methods 

support the real added value. Widespread discussion has globally ensued in the forest industry 

concerning the possibility of modifying timber pricing more towards quality-based pricing 

(e.g. Malinen et al. 2010). This could significantly affect the timber market and also the 

accuracy and detail of required forest resource information (Figure 1). 

Three-dimensional (3D) technologies for forest mapping and monitoring have been 

developed rapidly during the last decades. The capability to directly measure the 3D structure 

of forests has been the key turning point in forest mapping-related RS applications. Laser 

scanning (LS)-based techniques in particular have been studied immensely and some of these 

techniques have already come in to operational use. 

 

 

 
 

Figure 1. The different detail levels of forest inventory. The top-left corner shows the mean 

stem density value at stand-level; The top-right corner shows the predicted stem density 

value at 16 m x 16 m grid-level; The bottom picture shows the canopy height model from 

high-density airborne laser scanning data where single trees can be detected.  
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Airborne LS (ALS) is the most promising current laser scanning technique from the forest 

mapping and monitoring point of view because ALS data can be collected efficiently over 

large areas and forest attributes can be estimated accurately using detailed tree-by-tree 

measured modelling data. ALS has been used to estimate forest structural attributes from 

single trees (e.g. height, DBH and volume) to broader scales. Field measurements required 

in forest mapping over large areas are seen as costly to conduct especially if stem form, 

quality or biomass attributes are to be measured. For example, single-tree biomass cannot be 

measured in the field without destructive sampling and suitable allometric models are often 

not available. Fixed-position (mounted on a tripod) terrestrial laser scanners offer 

opportunities for the 3D mapping of smaller areas such as sample plots or individual trees 

with millimetre levels of detail. Terrestrial LS (TLS) is seen as an efficient and objective 

option for acquiring the required and accurate field data to be used, e.g. as a reference for 

forest mapping over large areas (Liang et al. 2011; Lindberg et al. 2012).  

LS development has mainly focused on the estimation of stand- or plot-level forest 

attributes and the accuracies of the methods are rarely validated at single-tree-level. The 

requirement of more detailed information and more efficient data acquisition from the single-

tree-level is growing. Single-tree methods have not yet been adopted for operational use due 

to the higher costs of data acquisition and more demanding data processing although the first 

single-tree methods were already presented in 1999 (see e.g. Hyyppä and Inkinen 1999).  

 

 

Thesis objectives 

 

The main aim of forest resource mapping is to produce unbiased and accurate information 

concerning forest structure and resources for forest owners, managers and the forest industry. 

The precise knowledge of the biomass (bioenergy potential), logging recoveries and the 

quality of the available timber at single-tree-level will play an essential role in the next 

generation of forest mapping systems. The main objectives of the present thesis were to 

develop methods for deriving single-tree-level attributes from active 3D RS data. LS-derived 

metrics were used in aboveground biomass (AGB) modelling in substudies I and II and the 

aim of substudies III and IV was to measure information on logging recoveries and external 

tree quality from harvesting sites using LS data. Substudy V presents an automatic stem curve 

measurement technique and substudy VI evaluates a multisource single-tree inventory (MS-

STI) for predicting diameter distribution combining TLS and ALS. The following specific 

objectives were set for studies I–VI: 

 

I Determination of single-tree-level biomass requires accurate measurements of 

tree structure and properties, which cannot be acquired without destructive 

sampling with traditional field measurements. Our goal was to assess the 

accuracy of high-density 3D point clouds measured with TLS from standing 

trees in single-tree AGB estimation.  

 

II RS methods are increasingly used in practical forest resource mapping and 

monitoring but the single-tree-level attribute models are mainly developed based 

on traditional field measurements. Our objective was therefore to assess the 
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accuracy of ALS-derived metrics in single-tree-level AGB modelling for Scots 

pine (Pinus sylvetstris L.) and Norway spruce (Picea abies (L.) H.Karst.). 

 

III Detailed knowledge of timber assortments and diameter distributions are 

essential for efficient forest management and optimization of raw material flows. 

Our objective was to compare the accuracies of high-density LS techniques 

(ALS and TLS) when estimating stem diameters and both total and assortment 

volumes at single-tree-level. The study also demonstrated a multisource 

approach, where TLS and ALS techniques were combined for a more detailed 

mapping of single trees.  

 

IV The quality of the available timber is a critical factor when timber harvesting is 

planned and the wood supply chain is optimized. Our objective was to assess the 

accuracy of external tree quality classification based on tree-level attributes 

measured from TLS point clouds.  

 

V Stem bucking requires information on stem curve. Stem curve cannot be 

measured in detail with traditional measurements prior to cutting. Our main 

objective was to demonstrate the automatic and non-destructive measurement of 

stem curve using TLS point clouds. 

 

VI MS-STI is an approach for obtaining tree-level forest resource information. It is 

based on a high-detail treemap created, e.g. from TLS or harvester 

measurements, and lower resolution RS data, e.g. ALS or aerial images. The 

accuracy of diameter distribution prediction of the MS-STI approach was 

assessed in varying forest conditions using automatically produced TLS-based 

treemaps as a foundation of the method.  

 

 

Laser scanning 

 

Principles of airborne laser scanning 

 

ALS is an active RS technique that uses the time-of-flight measurement principle to measure 

the distance to an object. The time-of-flight measurement utilizes the precise timing required 

for a pulse to travel from the sensor to the object and back to determine the range (Kukko 

2013). ALS data are normally collected using a small airplane or helicopter. The measuring 

equipment includes a Global Navigations Satellite System (GNSS) and an inertial 

measurement unit (IMU). The GNSS provides the position and velocity while the IMU 

measures the orientation information based on accelerometers. It is possible to correct 

erroneous location measurements (e.g. gaps in GNSS data) using the IMU. With the known 

position of the sensor and precise orientation of these range measurements, the position (x, 

y, z) of an object is defined. The principle of ALS is presented in Figure 1.  
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Figure 2. An airborne laser scanning (ALS) system includes a global position system (GPS) 

and an inertial measurement unit (IMU) for accurately measuring the position and orientation 

of the airplane. ALS uses the time-of-flight measurement principle to measure the distance 

to an object resulting in a three-dimensional point cloud (x, y, z) if combined with the GPS 

and IMU information. 

 

 

ALS data acquisition and the resulting point cloud is highly affected by forest structure 

but also the specifications of the scanning system play an important role in how the laser 

pulse interacts with the forest. In the simplest case, a laser pulse scatters directly from the top 

of the dense canopy layer or from the ground, resulting in only a single return. Because the 

forest canopy is not a solid surface, the measurement scenario becomes more complex and 

may result in multiple returns. The transmitted pulse can pass through the top of the canopy 

and intercept with different parts of the canopy, such as the trunk, branches and foliage, 

before reaching the ground. Multiple returns are recorded in most cases (Figure 3), but some 

systems also record the full waveform of the reflected laser pulse. The first returns are mainly 

assumed to reflect from the top of the canopy and the last returns mainly from the ground. 
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Figure 3. Laser pulse interaction with tree canopy can result in multiple returns because the 

forest canopy is not a solid surface. First returns are assumed to originate from the treetop 

and the last returns from the ground. 

 

 

LS system specifications and configurations affect how the laser pulse interacts in the 

forest structure and how the spatial distribution of the returns will be determined. According 

to Ackermann (1999), laser pulse penetration is approximately 20–40% during the summer 

in European coniferous and deciduous forests. The penetration rate is higher during the 

winter, especially in deciduous forests. Ahokas et al. (2011) concluded that the penetration 

rate is between 20–50% in Finnish coniferous forests, depending mainly on forest structure 

and tree size (volume).  

Data acquisition specifications affect laser pulse interaction in the forests, e.g. the ground 

returns decrease as the scanning angle increases (TopoSys 1996); a larger scan angle or 

higher flying altitude or speed will result in a smaller return density but larger spatial 

coverage (Lindberg 2012) and a higher flight altitude alters the distribution of laser returns 

from the top and within the tree canopies (Næsset 2004). From a practical point of view this 

is a challenge in LS-based forest inventory (FI) because ALS data will be collected using 

multiple sensors and varying data acquisition parameters due to the rapid development of the 

scanning technologies and also the changing objectives of the measurement campaigns. 

These variations in equipment and parameters is shown to affect forest attribute estimation 

(see e.g. Kankare et al. 2015; Næsset 2009) due to resulting dissimilarities in point cloud 

properties, which will cause variation on the point cloud-derived metrics (Næsset 2009).  

Forest attribute estimation from ALS has been based on two main approaches: an area-

based approach (ABA) (Næsset 2002; White et al. 2013) and individual tree detection (ITD 

(Hyyppä and Inkinen 1999). ABA relies on a statistical dependency between the field-

measured forest attributes and the predictor metrics derived from the RS data. Forest mapping 

over larger areas using ABA is based on generalizing tree-by-tree measured field sample 

plots using low-density ALS data (< 1 point per m2) but also higher density ALS data can be 
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used if available. ABA accuracy is highly affected by the amount, quality and distribution 

over different strata of the available training/modelling data and the resolution of the ALS 

data. In ITD, individual trees are recognized and segmented from the laser point cloud. Tree 

attributes are then determined either directly from the point cloud (e.g. height and crown 

width) or the attributes are estimated (e.g. DBH, volume and biomass) based on existing 

DBH, volume and biomass models. Single-tree attributes can also be modelled using point 

cloud metrics extracted for each tree segment, but this approach requires some amount of 

tree-level reference/modelling data. A method named the tree cluster approach (TCA) has 

been demonstrated in addition to these two approaches (e.g. Breidenbach et al. 2010). TCA 

can be seen as a combination of the two presented methods, where tree segments can include 

none, one or multiple trees and attributes are estimated based on statistical modelling. 

 

Principles of terrestrial laser scanning in forest measuring 

 

TLS is a 3D mapping approach of smaller areas with millimetre-level detail. TLS data are 

most often collected from fixed-positioned tripods within the target area. Targets surrounding 

the static measurement location are recorded as 3D points (x, y, z and intensity) reflected 

from the target surfaces visible to the scanner (see Figure 4). TLS distance measurement is 

based on either phase shift or time-of-flight measurements. The time-of-flight measurement 

principle is the same as that used in ALS, where the scanner uses the precise timing required 

for the pulse to travel from the sensor to the object and back for determining the range. Phase 

shift measurements utilize a continuous, phase modulated pulse and measure the phase of the 

returning pulse (e.g. Kukko 2013; Lindberg 2012). The phase information of the pulse can 

be used to calculate distance by recognizing the time when a pulse with a specific phase was 

emitted. The distance measurement accuracy in phase shift TLS is typically more accurate 

than time-of-flight TLS but the maximum range is shorter. Point density is highest near the 

scanner position and decreases rapidly as a function of distance. Average point density is 

approximately 25 000 points per m2 (e.g. Leica HDS6100 with high resolution). A typical 

commercial TLS scanner rotates 180 degrees horizontally and 310 degrees vertically, 

providing full coverage of the surrounding area in a short time frame. The time required for 

a single scan with the above-mentioned resolution varies from approximately two to four 

minutes depending on the scanner in use.  
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Figure 4. The principle of terrestrial laser scanning (TLS): TLS data are collected from a 

fixed-positioned tripod within the target area. A typical commercial TLS scanner rotates 180 

degrees horizontally and 310 degrees vertically (top-right corner), providing full coverage of 

the surrounding area in a short time frame. A high-detail 3D point cloud (x, y, z, intensity) is 

recorded based on the emitted pulses reflected from the target surfaces visible to the 

scanner. 

 

  

TLS data can be acquired from the sample plot using one or multiple scanning locations. 

Data acquisition is fast if only a single scanning location is used (e.g. Liang et al. 2012), but 

the resulting point cloud is incomplete in most cases because of shadowing effects, which 

cause challenges especially in tree detection and trunk modelling. The shadowing effect is 

caused particularly by different objects (e.g. trunk, branch or understorey vegetation) at close 

proximity to the scanner location. This effect is shown as data gaps behind the specific object 

in the point cloud (see Figure 5, left). Point density within the sample plot additionally varies 

considerably if the point cloud from only a single scan is used as shown in Figure 5 (left).  

Multiple scans from a sample plot provides more detailed measurement data from the 

target area (as shown in Figure 5, right) where the shadowing effect is reduced, but this is a 

more labour-intensive approach (e.g. Holopainen et al. 2013; Yu et al. 2013). This approach 

utilizes a central scan with one or more additional scan locations divided around the target 

area to provide a comprehensive point cloud. Multiple scans can be accurately co-registered 

using artificial reference targets (spheres) distributed over the target area (see the 

Methodology section). Figure 5 demonstrates the differences between these single or 

multiple scan datasets. Liang and Hyyppä (2013) presented a new approach for co-registering 

multiple scan data, where no artificial reference targets are required and the co-registration 

is performed using automatically created stem location maps from each individual scan.  
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Figure 5. Example of TLS point clouds collected with one or multiple scans from the sample 

plot. The multiple scan approach significantly reduces the occlusion caused by tree stem, 

branches or other understorey vegetation near the scanner location. 

 

 

TLS has been used in forestry for the detailed structure modelling of smaller areas 

(sample plots) and individual trees. TLS offers the means for determining basic tree attributes 

from sample plots, such as location, DBH and tree height directly from the point cloud. TLS 

additionally provides detailed measurement possibilities from standing trees (e.g. stem curve 

and branch distribution), which are not feasible to measure using traditional means. The 

prerequisite for TLS data usage is the automatic processing procedures, which have 

developed rapidly during the last few years (e.g. Liang 2013; Maas et al. 2008; Raumonen et 

al. 2013; Thies et al. 2004), but these techniques have not yet been adopted into operational 

forest mapping. 

 

 

Tree attribute estimation 

 

Comparison of airborne and terrestrial laser scanning techniques 

 

The possible applications and usability of the two LS techniques (ALS and TLS) differ 

significantly in forestry. The following chapters will compare these techniques in single-tree-

level forest attribute estimation. The techniques differ e.g. in feasible area coverage, view 

perspective, resolution and forest attribute estimation procedure. Figure 6 demonstrates the 

difference between the resulting point clouds at single-tree-level for these two LS techniques. 

ALS can be applied in collecting wall-to-wall data (point clouds) over interest areas, as the 

spatial resolution of the data enables the detection of single trees. TLS on the other hand is 

more suitable for measuring millimeter-level information from individual trees or sample 

plots (e.g. typically 200–500 m2). Previous studies on single-tree mapping with ALS and TLS 

have shown that tree detection algorithm, the tree attribute estimation procedure and forest 

structure are the most important factors in estimating tree attributes (Kaartinen et al. 2012b; 

Vauhkonen et al. 2012). Table 1 summarizes the two different laser scanning techniques.  
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Figure 6. Point clouds from a single tree measured with ALS (black dots) and TLS (green 

dots).  

 

 

Table 1. Summary of the ALS and TLS systems. 

  ALS TLS 

View perspective Airborne Ground 

Spatial coverage 
Single tree to wall-to-wall 

coverage 
Single tree to small 

area 

Point density /m2 0.5–20 25000a 

Usability 
Single tree to wall-to-wall 

coverage 
Reference 

measurements 

Forest attribute estimation  

DBH Model Directb 

Height Direct Directc 

Stem curve Model Directb 

Volume Model 
Model (based on stem 

curve) 

Biomass Model Model 

Data collection time Fast Slow 

Platform Aeroplane, helicopter Tripod 
a Leica HDS6100 scanner with high resolution 
b Can be measured automatically from the data. 
c Direct measurement of tree height is not possible in dense forest conditions with closed 

canopy layer due to the lack of visibility to the tree top.  

 



19 
 
 

 
 
 

Single-tree detection 

 

The main distinction in tree detection between ALS and TLS is the difference between view 

perspectives. ALS data are collected from above the forest canopy looking down (Field of 

view typically varying from ±15–20 degrees) and TLS data are collected from below the 

canopy with a moving view angle (vertically from 25° to 335°). ITD from ALS data are most 

often based on detection of local maxima values and segmentation of the tree crown around 

the local maxima. Tree detection from TLS is based on stem point recognition and modelling 

underneath the canopy. Despite the differences in view perspectives, successful tree detection 

in both systems is highly dependent on forest structure (visibility) and the used processing 

algorithms (Kaartinen et al. 2012b; Liang 2013; Vauhkonen et al. 2012).  

The emitted pulse density prerequisite for successful tree detection from ALS point 

clouds has been > 5 points/m2 but a few studies have demonstrated that dominant layer trees 

can also be detected from lower density (~ 2 points/m2) point clouds (e.g. Vastaranta et al. 

2011; Yu et al. 2011). A pulse density increase from 2 points/m2 to 8 points/m2 was found to 

have only minimal effect on tree detection accuracy (Kaartinen et al. 2012b). The bottleneck 

of ALS-based tree detection have been the small non-dominant layer trees, which are not 

visible from the above canopy view perspective. Hyyppä and Inkinen (1999) showed that 

40–50% of the single trees could successfully be segmented from the canopy height model 

(CHM) in coniferous forests. Persson et al. (2002) improved the tree detection rate to 71%. 

Yu et al. (2011) assessed the tree detection accuracy of various managed forest conditions, 

resulting in an overall accuracy of 69%. Kaartinen et al. (2012) and Vauhkonen et al. (2012) 

assessed the tree detection accuracies of international comparison studies where a total of 18 

different ITD algorithms were tested. Studies demonstrated that the applied ITD algorithm 

and forest structure have a significant effect on ITD accuracy. In all, tree detection accuracies 

have varied between 25% and 100% (e.g. Kaartinen et al. 2012; Popescu et al. 2003; 

Vauhkonen et al. 2012; Yu et al. 2011) of the total number of trees, but e.g. Persson et al. 

(2002) and Vastaranta et al. (2011) demonstrated that 60.2–99.9% of the detected trees 

contributed 75.9–100% of the total volume in the study areas.  

Compared to ALS, TLS is capable of also accurately detecting the non-dominant layer 

trees if data collection is performed using multiple scans in varying forest structures. The 

shadowing effect (visibility from the scan location) caused by the forest structure (tree stem, 

branches and other understorey vegetation) has a significant effect on tree detection accuracy. 

Tree detection accuracy is significantly higher if multiple scans are used in data collection, 

because data can also be obtained from areas that are occluded in a single scan. The most 

used method for tree detection from TLS point clouds has been to cut a horizontal cross-

section (slice) from the data and recognize the tree stem by point clustering and circle fitting 

(see e.g. Lindberg et al. 2012; Maas et al. 2008; Moskal and Zheng 2012). Tree detection 

accuracy with multiple scans has previously varied between 91.7–100%, whereas with 

single-scan the corresponding accuracy has varied between 55.3–90%, depending on tree 

density in the study areas (Liang and Hyyppä, 2013; Liang et al. 2012; Maas et al. 2008). 

Liang and Hyyppä (2013) showed that similar tree detection accuracies can be achieved 

compared to the multiple scan approach where artificial targets are used in co-registration 

when using the multiple scans approach, where individual scans are co-registered using 

automatically generated stem location maps. The method introduced by Liang and Hyyppä 
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(2013) reduces the amount of equipment and work time required in the field during data 

collection. 

 

Tree species, DBH, height and stem curve 

 

Tree attributes can either be directly measured from the point cloud or modelled based on the 

metrics derived from the point clouds depending on the LS data used. ALS directly measures 

only tree height and possibly canopy structure (e.g. tree canopy width), while all other tree 

attributes (e.g. DBH and volume) have to be modelled. ALS tends to underestimate tree 

height (see e.g. Rönnholm et al. 2004) due to pulse interactions within the canopy. Rönnholm 

et al. (2004) showed that single tree height was underestimated, on average, by 0.76 m to 

1.46 m depending on the tree species. Similar underestimations where found by Maltamo et 

al. (2004), where 46% of the trees were underestimated by > 1 m and 37.4% by < 1 m. Tree 

DBH can be modelled based on allometric relationship between DBH and height (see e.g. 

Kalliovirta and Tokola 2005). Existing models based on tree species, height, and DBH are 

also used when estimating stem volume and curve (see Laasasenaho 1982). Tree attributes 

can also be estimated using metrics describing tree shape and point distributions within the 

tree segment and ABA techniques (e.g. Maltamo et al. 2009; Vauhkonen et al. 2010; Yu et 

al. 2011). Estimation accuracies for DBH have varied between 1.25 cm and 3.9 cm, 

depending on the method (general model or locally calibrated model) and study area (e.g. 

Maltamo et al. 2009; Vauhkonen et al. 2013, 2010; Yu et al. 2011). 

TLS enables direct measurement of most tree attributes that are typically collected in 

forest inventories, e.g. DBH, height, stem curve and quality attributes, such as the height of 

the lowest branch (see e.g. Kretschmer et al. 2013; Liang and Hyyppä 2013; Maas et al. 2008; 

Pfeifer and Winterhalder 2004; Raumonen et al. 2013). Tree volume can be calculated 

directly based on the stem curve by calculating the volume of 3D cylinders fitted to the stem 

points. The uncertainty caused by the modelling required in ALS is therefore reduced but the 

spatial coverage is not sufficient for wall-to-wall inventories. Stem curve measurements from 

TLS point clouds were first mentioned in Thies et al. (2004) and the most commonly used 

method is to fit cylinders to the stem points at predefined heights along the stem. Thies et al. 

(2004) demonstrated the use of cylinders fitted to the stem point clouds, but this method 

required initial starting on a stem surface to begin stem reconstruction. Maas et al. (2008) 

utilized tree location and horizontal slice to fit the circle into a 2D projection of the stem 

points. This procedure can be repeated at predefined heights to reconstruct the stem curve. 

Maas et al. (2008) reported that the largest errors in stem curve occurred at the bottom and 

top of the tree. The RMSE was 1.0 cm between the heights of 0.7 m and 7.70 m in Maas et 

al. (2008).  

Tree height is also underestimated by TLS data because the highest point of the tree 

canopy is not visible to the scanner. Tree height accuracy compared to field measurements 

have varied between 1.36–6.53 m in previous studies (e.g. Liang and Hyyppä 2013; Maas et 

al. 2008). The accuracies of the DBH measurements from TLS data have varied between 

0.74–3.25 cm depending on the data acquisition strategy (one or multiple scans)(e.g. Liang 

and Hyyppä 2013; Maas et al. 2008; Yao et al. 2011). Stem form has been shown to highly 

affect DBH (see e.g. Saarinen et al. 2014). Most of the automatic data processing methods 

with TLS utilize the above-mentioned cylinders fitted to the stem points, from which DBH 

is derived from the cylinder at a height of 1.3 m. This approach assumes that the stem form 
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is circular, which will cause uncertainty in the DBH estimates. DBH estimation accuracy 

should be further researched in more diverse forest condition because previous study sites 

have mainly exhibited plantation or managed forest conditions. 

Tree species recognition has been a difficult task, which has not yet been fully solved. It 

was initially concluded that LS techniques are not solely sufficient for accurately recognizing 

tree species and complementary data sources were required (Vauhkonen et al. 2014). 

However, the focus has been on developing tree species recognition methods based on ALS 

data (see e.g. Holmgren et al. 2008; Korpela et al. 2010; Vauhkonen et al. 2010, 2009), while 

Puttonen et al. (2010b) have published results using TLS only. Tree species recognition in 

their study was conducted using a combination of TLS and a hyperspectral sensor. With ALS 

data, tree species classification is based on either the ABA approach, where tree species is 

predicted for the target area using accurate modelling data or ITD, where different types of 

metrics (e.g. structural, intensity or waveform) are used as a basis for the classification (see 

Vauhkonen et al. 2014)). One promising approach is to utilize complementary information 

derived from an MS approach with a combination of LS and spectral image data, which could 

be provided by multi- or hyperspectral sensors (Vauhkonen et al. 2014).  Tree species 

classification accuracies for Scandinavian boreal forests, where the number of commercially 

important tree species is rather low, have varied between 60 % and 93% (see e.g. Holmgren 

and Persson 2004; Holmgren et al. 2008; Korpela et al. 2010; Vauhkonen et al. 2010, 2009).  

 

Single-tree biomass 

 

Single-tree AGB estimation based on LS techniques has not been widely studied previously 

due to the costly reference data required for modelling. AGB estimation relies on allometric 

models based on tree species, DBH and height if the models exist in the specific target area.  

Destructive sampling of single trees is necessary when developing new allometric models, 

used to derive the exact biomass of the tree components (stem, branches and leaves) as a 

reference. ABA accuracy has been the main focus in AGB estimation at the plot- or stand-

level (e.g. Bortolot and Wynne 2005; Jochem et al. 2011; Kankare et al. 2013; Latifi et al. 

2010; Næsset 2004; Popescu et al. 2004). The first results of single-tree-level AGB 

estimation based on ALS data were presented in Popescu (2007). Popescu’s (2007) results 

showed that 78% of the variation associated with single-tree-level AGB was explained by 

linear models. Zhao et al. (2009) improved the R2-value to 0.80 and 0.88 for pine and 

deciduous trees respectively, using the scale invariant approach. It should be noted that 

neither of these studies utilized destructive sampling as a reference while allometric model 

estimates were used as reference. Räty et al. (2011) and Hauglin et al. (2013b) were among 

the first to utilize destructive sampling as a basis for ALS AGB models. Hauglin et al. (2013b) 

developed models for single-tree branch biomass estimation for Norway spruce using either 

the random forest technique, stepwise or simple linear least squares regression. Estimation 

accuracies (relative root mean squared error, RMSE%) varied from 35% to 51% depending 

on the applied method.  

Where ALS-based AGB estimation is based on either predicting species, DBH and height 

and then modelling the AGB or by modelling the AGB directly using point cloud-derived 

predictors, TLS enables AGB component estimation directly based on e.g. stem volume 

calculated from the automatic stem curve. Yu et al. (2013) demonstrated that stem 
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reconstruction and correspondingly derived stem volume can be used as explanatory 

variables for accurately modelling stem biomass. An RMSE of 17.3 kg (12.5%) was reported 

(Yu et al. 2013). A similar approach could also be utilized for branch biomass estimation if 

the automatic measurement of branches could be solved. A few promising approaches have 

already been demonstrated (see e.g. Raumonen et al. 2013). Hauglin et al. (2013a) 

demonstrated that more accurate branch biomass can be achieved using TLS than with 

existing allometric models. The RMSE of 32% of Norway spruces were found in the voxel-

based approach. Based on the results achieved in Hauglin et al. (2013a), Hauglin et al. (2014) 

studied the use of TLS measurements as a reference for ALS-based branch biomass model 

development. They found only a small increase (3%) in the branch biomass accuracy if TLS 

is used in ALS model training compared to when branch biomass is estimated based on ALS-

derived DBH and height with existing allometric models.   

 

Logging recoveries and timber quality 

 

The total volume of the stem and timber assortment (sawlog and pulpwood) volumes and 

their estimation accuracies have a critical impact on the decision-making and optimization of 

the raw material flow. Total volume estimation has been based on existing volume models 

(see e.g. Laasasenaho 1982) incorporating tree species, DBH and height as input attributes. 

Timber assortment volume or sawlog-% estimates have been based on measured mean 

attributes of the stand and on theoretical DBH distributions (e.g. the Weibull distribution 

(Bailey and Dell 1973)) of the study area (e.g. Maltamo and Gobakken 2014). Estimation 

accuracies have previously been reported mainly at the forest stand-level (m3/ha) (Holmgren 

et al. 2012; Korhonen et al. 2008; Peuhkurinen et al. 2007). Although the studies by 

Peuhkurinen et al. (2007) and Holmgren et al. (2012) aggregated these estimates from 

individual tree segments, sawlog and pulpwood proportions have rarely been validated at the 

tree-level in previous studies. Vastaranta et al. (2014) demonstrated the use of MS-STI in the 

logging recovery estimation of a mature Scots pine stand where harvester measurements were 

used as a reference. The accuracy of sawlog volume prediction varied between 28.7–43.5% 

and pulpwood volume between 125.1–134.3% if either high or low density ALS or digital 

stereo imagery was used in the prediction. The variation was much smaller at stand level, 

resulting in a 0.2% difference at best (Vastaranta et al. 2014).  

LS techniques also enable the measurement of various external quality attributes, such as 

stem curve and lean, branch size, bark characteristics or canopy-related attributes. The 

capabilities to measure these attributes with ALS or TLS vary due to the different view 

perspective and amount of detail (point density) that can be extracted. ALS can be mainly 

used to measure different canopy or single-tree crown properties, such as canopy width or 

living crown density or height. No direct measurements of the tree trunk or branches can be 

obtained from ALS point clouds. ABA is a viable option for ALS-based quality estimation if 

the training data includes quality attributes (see e.g. Maltamo et al. 2009). TLS offers more 

possibilities for measuring quality attributes directly from single trees but with smaller spatial 

coverage. TLS has been successfully used to measure branch size distribution (Raumonen et 

al. 2013), stem form (taper, sweep and lean) (Pfeifer and Winterhalder 2004; Thies et al. 

2004) and bark characteristics (see Kretschmer et al, 2013). Stängle et al. (2014) also 

demonstrated that external bark quality attributes can be linked with the internal quality of 

logs, as determined with strong correlation by X-ray computer tomography.  
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MATERIALS 
 
 

Study areas and field measurements 

 

The two study areas of this thesis are located at Evo (61.19ºN, 25.11ºE) and Hyytiälä (61.845° 

N, 24.287° E) (Figure 7). Both areas belong to the southern boreal forest zone and are 

comprised of a broad mixture of forest stands, varying from natural to intensively managed 

forests.  

Extensive field measurement campaigns were carried out at Evo during 2007–2009. The 

study area consists of over 700 fixed-sized (300 m2) circular sample plots established during 

this time window. Sampling the field plots was based on the  prestratification of existing 

stand inventory data to distribute plots over various site types, tree species and stand 

development classes (see detailed description from Kankare et al. (2013)). The following tree 

attributes were measured for all trees with DBH > 5 cm: tree species, DBH, height and canopy 

layer (dominant or sub). Total volume and component AGB (total, stem, living or dead 

branch) were estimated using existing models based on species, DBH and height 

(Laasasenaho 1982; Repola 2009, 2008). 

From these 700 previously established sample plots, 27 were selected for the TLS 

campaign in 2010. The selection criteria indicated that the plots should be as heterogeneous 

as possible. A total of 38 sample trees were selected within nine TLS campaign plots for 

substudies I, II and V. These 38 sample trees were measured in detail using destructive 

sampling. The following attributes were recorded: species, height, DBH, AGB components 

(total, stem, living and dead branch) and stem curve. In addition to the 38 sample trees 

measured from Evo, 26 sample trees were measured using the same procedure from Hyytiälä 

in 2010 and 2011. These were used as additional trees in substudy I. Substudy VI utilized the 

full 27 sample plot dataset measured with TLS in 2010.  

Field measurements of the forest stands used in substudies III and IV were acquired in 

2012 from Evo. The stand was approximately 2 ha in size and the main tree species was Scots 

pine. The following attributes were measured for the 144 sample trees within the stand: 

location, species, height, DBH, D6, external quality class and height of the lowest living and 

dead branches. Tree quality was recorded by ocular assessment based on instructions by the 

National Forest Inventory (NFI) of Finland. Table 2 summarizes the field measurements and 

available laser scanning datasets. 

Harvester data was acquired from the above-mentioned stand in autumn 2012. The 

logging machine was a Ponsse Beaver and it gathered STM data according to the Standard 

for Forest Data and Communication (StanFord 2009). An STM file includes data for each 

felled tree regarding the logging machine’s position at the time of felling, stem diameters at 

10-cm intervals from the felling height to the final bucking height, tree species, bucking 

parameters and bucked assortment volumes. The following attributes were utilized in 

substudy V: DBH, sawlog and pulpwood volume and bucking information.  
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Figure 7. Study areas were located at Evo (61.19ºN, 25.11ºE) and Hyytiälä (61.845° N, 

24.287° E). 

 

 

Table 2. Summary of the applied field datasets and the available laser scanning datasets. 

Study Area 

Number of 

sample 

trees 

Number of 

Field plots 

(area) 

Number or 

stands 

(area) ALS TLS 

I 
Evo and 

Hyytiälä 
64 - - No Yes 

II Evo 38 - - Yes No 

III Evo 144 - 1 No Yes 

IV Evo 144 - 1 Yes Yes 

V Evo 28 9 - No Yes 

VI Evo 579 27 - Yes Yes 
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Table 3. Summary of the applied ALS datasets and scanning parameters. 

Acquisition 

date / Year Area Instrument Altitude, AGL 

Pulse 

density Substudy 

2009 Evo Leica ALS50-II 568.3 10 II, VI 

2011 Evo Leica ALS50-II 1000 9 IV, V 

 

 

Table 4. Summary of the used TLS datasets.  

Acquisition 

date / Year Area Instrument 

Single- or 

Multiscan 

mode Substudy 

2010 Evo Leica HDS6100 Multi I, III, VI 

2010 Hyytiälä Leica HDS6100 Multi I 

2012 Evo Leica HDS6100 Multi IV, V 

 

 

Laser scanning 

 

Airborne laser scanning 

 

The ALS datasets used in this thesis were acquired in 2009 and 2011. The ALS datasets 

acquired in 2009 and 2011 were collected by Finnmap Ltd. and Terratec Ltd., respectively. 

Detailed information of the ALS campaigns is presented in Table 3.  

 

Terrestrial laser scanning 

 

Terrestrial laser scanning datasets were measured from sample trees, plots and stands in 2010 

and 2012. A Leica HDS6100 scanner was used in all the measurement campaigns. TLS 

measurements were collected with multiple scans to ensure the best possible point coverage 

of the study area in question. A summary of the used TLS datasets is presented in Table 4.  

 

 

METHODOLOGY – OVERVIEW 
 
 

Airborne laser scanning data processing 

 

Creation of terrain, surface and canopy height models 

 

Digital elevation models (DEMs) are created by utilizing the echo type information recorded 

during data acquisition in addition to the x, y, z and intensity values. A digital terrain model 

(DTM, Figure 8 left) is created utilizing the lowest returns with pixel size, e.g. 1 m.  
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Figure 8. Digital terrain model (DTM, left) describes the ground elevation (above sea-level) 

with a spatial resolution e.g. 1 m. Canopy height model (CHM) describes the height of the 

aboveground vegetation with a spatial resolution e.g. between 0.25 m and 1 m.  

 

 

Points belonging to the ground are generally classified by the ALS data provider (for 

more details in ground classification algorithms, see e.g. Sithole and Vosselman 2004). A 

digital surface model (DSM) is then created from the highest returns with pixel size varying 

from 0.25 m to 1 m depending on ALS data density. Values for empty pixels are interpolated 

based on the neighbouring pixel values (e.g. using fill gaps function in Terrascan software). 

A canopy height model (CHM, Figure 8 right) or a normalized digital surface model (nDSM) 

is calculated by subtracting DTM from DSM. ALS data tends to underestimate tree height 

(e.g. Hyyppä and Inkinen 1999) because the highest returns are often not reflected from the 

exact top of the tree but from the highest parts of the tree canopy. DTM accuracy also affects 

tree height underestimation. In forest conditions DTM accuracy varies between 10–50 cm 

(Axelsson 2000; Hyyppä et al. 2005; Kraus and Pfeifer 1998). DTM can be overestimated 

due to dense ground level vegetation, which causes CHM underestimation. Full-waveform 

ALS data could be utilized to improve the DTM classification accuracy (see e.g. Ullrich et 

al. 2007). 

 

Individual tree detection 

 

The initial task of ITD is to recognize single trees from the point cloud or created CHM 

(Figure 9). A wide variety of methods have been developed during the last decade for this 

purpose (see summaries from Kaartinen et al. (2012) and Vauhkonen et al. (2012)). A typical 

approach is to detect local maxima values (treetops) from the smoothed CHM. CHM is 

smoothed to filter out small variations on the crown surface. The amount of smoothing should 

be adjusted accordingly to the various forest structures; a high amount of smoothing will 

reduce the number of discovered maxima values (trees), which can e.g. (1) cause 

underestimation (commission trees) in recognized treetops in dense canopy layers or (2) 

reduce overestimation (omission trees) in recognized treetops in sparse canopy layers. After 

local maxima’s are recognized, the boundaries of the treetops are segmented, e.g. using 

watershed segmentation.  

ITD accuracy is shown to be dependent on pulse density and forest structure. The best 

ITD results can be achieved with higher pulse densities; the pulse density prerequisite for 

ITD has been > 5 pulses per m2 but older trees with larger canopies can be recognized with 

lower pulse densities. It is possible to record the location, height and also crown shape for 

each tree using ITD.  
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Figure 9. Example of the canopy height model (CHM) with a spatial resolution of 0.5 m and 

single tree points (right) extracted from high-density (emitted pulse density 10 points/m2) 

airborne laser scanning (ALS) data. 

 

 

Tree location is recorded from the location of the highest return inside each canopy 

segment or as an arithmetic mean of all returns inside the segment. Tree height is extracted 

from the highest return or from the highest CHM pixel value within the canopy segment. The 

created canopy segments can also be used to extract the returns belonging to single trees for 

further processing. Tree DBH is modelled based on the dependencies between tree height 

and DBH (Kalliovirta and Tokola 2005) and tree volume using the volume models of 

Laasasenaho (1982). 

 

Predictor extraction from the point cloud for tree attribute modelling 

 

The derived metrics describing the distribution of the point returns within each crown 

segment and the shape of the crown can be used e.g. in tree attribute modelling (see e.g. 

Korhonen et al. 2008; Næsset 2002). To minimize the effect of ground vegetation and rocks, 

returns close to zero m are typically considered ground returns and returns with a height 

greater than 2 m as vegetation returns (Yu et al. 2011). Metrics used in the modelling are then 

extracted only from the vegetation returns. 

The following metrics were utilized in ALS-based single-tree AGB model development 

and single-tree attribute estimations: minimum, maximum, mean and standard deviation of 

the return heights. Penetration describes the relative amount of returns coming from ground 

level compared to all of the returns. Canopy height distribution percentiles describe a number 

of returns occurring from specific height percentiles (5th, 10th, 20th, …, 90th and 95th). Crown 
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density is extracted for corresponding percentiles as a portion of vegetation returns compared 

to all returns. Geometric metrics included attributes that describe canopy shape and size, e.g. 

canopy height, crown area, crown volume and maximum crown diameter.  

 

Terrestrial laser scanning data processing 

 

Point cloud registrations 

 

All of the TLS datasets acquired in the substudies utilized multiple scans. This approach 

requires the co-registration of individual scans to create one unified point cloud from each 

study subject. Co-registration is based on the detection of reference targets from each point 

cloud. The reference targets are typically divided within the study area so that all reference 

targets are visible from the centre scan and a minimum of three from the remaining scans. 

Constant size spheres are fitted in the point clouds (detected reference targets) during the co-

registration process. Based on the spheres, 3D transformation is calculated between the point 

clouds. Co-registration can be performed in an internal coordinate system, where each scan 

is registered to the coordinate system of the centre scan, or in an external coordinate system. 

An external coordinate system requires location measurements for the reference targets and 

scanning locations using the GNSS. 

 

Manual tree detection and extraction 

 

ITD and point cloud extraction was performed manually, with the same principle as an 

automatic approach utilizing the 3D environment. TLS point clouds were processed in scan 

groups (co-registered groups), which were searched from the sample trees using visual 

interpretation (Figure 10). The process is based on the detection of circular objects from a 

horizontal cross-section of each point cloud. Individual trees were detected and marked 

within the cross-section (see Figure 10) and location and tree attributes (e.g. DBH and height) 

were recorded. TLS returns belonging to each sample tree were also extracted for further 

processing and metric extraction using classification tools in Terrascan software. 
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Figure 10. Individual tree extraction. Picture modified from Saarinen et al. (2014, p. 1037). 

The top left figure demonstrates the full point cloud within the sample plot. The top right 

figure demonstrates the horizontal cross-section taken at a height of 1.3 m and the bottom 

figure demonstrates the visible stem points as circular shapes while detected trees are 

marked with green dots. 

 

 

Metric extraction 

 

Similar statistical and geometrical metrics describing the canopy structure and point 

distributions were extracted from the TLS and ALS point clouds for tree attribute modelling 

purposes (see e.g. Puttonen et al. (2011, 2010) and Næsset and Gobakken (2005)). Statistical 

metrics included the minimum, mean and maximum height of the returns, point density 

within a specified fraction of the tree, percentiles calculated from 10% to 100% of the canopy 

height distribution, point densities in these same percentiles and also the skewness and 

kurtosis of the height distribution. The geometric metrics included crown height, perimeter 

and area, tree surface area and volume. The crown perimeter and area were calculated using 

2D Delaunay triangulation and tree surface area and volume with 3D Delaunay triangulation.  

 

Automatic measurements 

 

Trees were detected and stem points were automatically recognized and reconstructed using 

a robust modelling procedure (described in detail in Liang and Hyyppä 2013; Liang 2013; 

Liang et al. 2012). Stem points were identified based on the spatial properties of the points. 

A local coordinate system was created for each point and the point was included as a stem 

surface point if neighbouring points were mainly distributed along two axes in the created 

coordinate system and the point’s normal direction is roughly horizontal. 
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Stem curve modelling is based on the points recognized as stem points. A series of 3D 

cylinders is fitted to the selected points using robust estimation. This is used to weight the 

selected point to reduce the effect of cross errors (e.g. incorrectly selected stem points 

originating from the branches). Robust estimation is an important part of the modelling 

process, especially with Norway spruce where the branch point effect is more significant. 

The matching process is repeated as long as there are enough stem points. The stem curve 

model is further smoothed to reduce the possible cross errors. Smoothing is performed if the 

next cylinder estimation has a larger diameter than the average of n previous estimations. The 

value of n was set to 3 in substudy V. The diameters are extracted from the predefined heights 

along the stem based on the created 3D stem curve models. Stem volume was also computed 

as the sum of each stem section volume. Tree location is recorded from breast height along 

with the DBH measurement value. 

 

 

Multisource approach 

 

The multisource (MS) approach utilizes the attributes and metrics derived from TLS and ALS 

and could provide the means for more detailed analysis for single-tree mapping. MS 

approaches presented here utilized (1) a combination of TLS and ALS measurements and (2) 

TLS as auxiliary information for tree mapping where tree attributes are then estimated based 

on ALS ITD. Both methods rely on the high location accuracy of single trees.  

The first approach combined trees manually detected from TLS and ALS point clouds by 

utilizing field-measured location information. With this approach, the direct measurements 

of the single-tree point clouds were utilized in tree attribute measurements in the following 

way: TLS was used for the detailed measurement of the tree stems and ALS for the height 

measurements. With this method it is possible to minimize the tree attribute modelling effect, 

which has been compulsory especially with ALS when DBH or volume is estimated.  

The latter MS-STI approach is based on a detailed treemap produced with TLS or with 

mobile laser scanning (MLS) in the future. Two major bottlenecks of state-of-the-art ITD 

techniques used with ALS can be avoided using this method: (1) the detection of smaller, 

non-dominant layer trees and (2) tree species detection. MS-STI uses treemaps with location 

and tree species information from each tree as auxiliary information when deriving ALS 

metrics for ABA computations. The treemap is combined to ALS-based single-tree segments 

using location information. If two or more trees are within one ALS tree segment, the 

segment is divided equally to represent each tree. After the combination process, ALS-based 

metrics are derived and used in ABA estimation. 

 

 

Results evaluation 

 

The accuracies of the tree-level measurements and estimated attributes were evaluated by 

calculating the bias and RMSE: 

 

𝐵𝑖𝑎𝑠 =  
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1

𝑛
       (1) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖−�̂�𝑖)2𝑛
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where n is the number of observations, yi the value estimated for observation i and �̂�𝑖 the 

predicted value for observation i. Quality classification accuracy is presented in substudy IV 

as the relative error between the estimated and reference quality class. The goodness of fit of 

the diameter distributions were assessed in substudy VI using error indices suggested by 

Packalén and Maltamo (2008): 

 

𝑒 =  ∑ 0.5 |
𝑓𝑖

𝑁
−

�̂�𝑖

�̂�
|𝑘

𝑖=1 ,      (3) 

 

where fi is the true and fî the predicted stem number in class i, k the number of classes or 

bins and N the true and N̂ the predicted stem number of all diameter classes. Frequency 

differences are multiplied by 0.5 to scale the error indices between 0 and 1, 0 meaning a 

perfect fit and 1 meaning that the distributions do not overlap at all. 

 

 

RESULTS AND DISCUSSION OF THE SUBSTUDIES 
 
 

Individual tree biomass estimation using terrestrial laser scanning 

 

The reliability of ground measured single-tree AGB information is vital to obtain accurate 

and unbiased AGB estimates over large areas. It is not feasible to measure tree-level biomass 

in the field because it requires destructive sampling, which will increase field measurement 

costs. Tree-level biomass models are therefore essential. Tree-level AGB can currently be 

estimated using species-specific models based on tree attributes that are easy to measure in 

the field (e.g. stem diameter and height). Frequently the limiting factor for these AGB models 

is that they can only be applied to certain geographical areas and also for a rather small 

number of tree species. These models are also mostly incapable of utilizing any attributes 

from the tree canopy, and therefore the canopy biomass accuracy in particular has been lower. 

Approximately 75–85% of the AGB of mature trees in the boreal forest zone is located in the 

tree stem (Lehtonen et al. 2004) and the amount of biomass related to the tree canopy is thus 

rather small (Figure 11). However, canopy biomass is important for the forest bioenergy 

sector, where logging residues, i.e. branches and treetops, is one of the main bioenergy raw 

material sources originating from forests. TLS has been used for the detailed modelling of 

small areas, e.g. sample plots (Liang 2013) and it could provide the means for measuring the 

acquired reference data from standing trees for biomass modelling. Substudy I presented the 

first TLS metrics-based AGB models available in the literature.  
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Figure 11. An example of terrestrial laser scanning point clouds of Scots pine (left) and 

Norway spruce (right) and their AGB distribution between different parts of the tree (stem, 

bark and branches). AGB distributions were calculated from the field measured sample 

trees. 

 

 

The accuracy of AGB component estimation (total, stem, living and dead branch) 

increased significantly when multiple predictors where extracted from the TLS point cloud 

and used in the predicative models. The used predictors described the shape, size and 

statistical distribution of the points belonging to each sample tree. RMSEs for total, stem, 

living and dead branch estimation were 12.9%, 15.0%, 23.4% and 31.1% for Scot pine and 

11.9%, 16.4%, 38.1% and 122.2% for Norway spruce were achieved, respectively. 

Corresponding accuracies for the allometric models (species, DBH, height, Repola 2009) 

were 21.6%, 29.5%, 62.1% and 132.1% for Scots pine and 29.6%, 34.7%, 101.1% and 

182.1% for Norway spruce. Results showed that canopy biomass accuracy particularly can 

be improved with TLS-derived information. The most important metrics in the biomass 

modelling were stem volume and canopy shape and volume metrics. Dead branches were the 

most inaccurate AGB component because their amount is relatively small and the distinction 

between living and dead branches would require spectral information, which was not 

available. The ability to manually measure the stem curve from the TLS point cloud was also 

assessed in substudy I. The results showed that diameter can be measured accurately for the 

lower part of the tree. For the upper part of the tree the success rate of measuring the diameter 

decreased rapidly, especially for Norway spruce. The average success rates for measuring the 

diameter for Scots pine and Norway spruce were 86.9% and 48.2%, respectively.  

 

 

Single-tree biomass modelling using airborne laser scanning 

 

ALS methods are becoming a standard technique used in forest resource mapping and 

monitoring. The cost of ALS data acquisition campaigns is already fairly low (approximately 

0.5–1 €/ha) for lower pulse density data (< 2 pts/m2). Higher pulse density required for ITD 

is still more expensive but could bring added value to forest mapping especially in difficult 
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to reach areas. Vastaranta et al. (2012) introduced a forest mapping technique where the 

required reference data for large scale ABA estimation was measured using ITD. The 

accuracy of this method is highly dependent on the ability to model tree-level attributes based 

on ALS metrics. However, AGB models are developed mainly based on traditional field 

measurements. The main objective of substudy II was therefore to assess the accuracy of 

ALS- derived metrics in AGB modelling. Based on the modelling results of substudy I, the 

amount of predictor variables was minimized to create more simple models and dead branch 

biomass was assessed as part of the canopy biomass. ALS is capable of capturing variations 

in (1) tree height, (2) canopy size and (3) canopy density. The metrics used as predictor 

variables were therefore classified into these three classes and one metric from each class 

was selected as a final predictor variable in the developed regression models. 

The RMSEs achieved with developed ALS-based AGB models for total, stem, canopy 

and living branch biomass were 26.3%, 28.4%, 30.2% and 32.6% for Scots pine and 36.8%, 

27.6%, 77.8% and 70.8% for Norway spruce, respectively. Existing AGB models (Repola 

2009, 2008) with field measured DBH and height resulted in more accurate AGB estimates. 

The only exception to this were the canopy and living branch biomass estimation accuracies 

for Norway spruce, were ALS-based models were slightly more accurate. The performance 

of the existing AGB models with ALS-derived DBH and height was also assessed to compare 

whether new ALS-based models can improve estimation accuracies. AGB estimation 

accuracy was lower for all the AGB components compared to developed ALS-based AGB 

models. These results support the assumption that new forest attribute models, especially for 

AGB components, should be developed based on the ALS technique and not only based on 

field measurements. However, developing robust ALS-based biomass models is challenging 

because it requires large treewise reference data measured with destructive sampling and 

ALS-derived metrics should be non-dependent on the data acquisition parameters.   

 

 

Accuracy in estimation of timber assortments and stem distribution – A 

comparison of airborne and terrestrial laser scanning techniques 

 

The economic value and detailed information on forest structure and possible timber 

quantities are crucial to individual owners and forestry organizations, thus enabling 

sustainable forest management operations. The information currently available for this 

purpose are the stand-level mean characteristics (e.g. basal area, stem density, volume and 

height), which lose information from the structure variability (see Figure 1). Timber 

assortments, diameter distribution, quality and yield value are the most essential factors for 

forest owners during decision-making concerning forest management operations and for 

forest organizations e.g. when searching for potential harvesting sites and optimizing raw 

material flows. The objective of substudy III was to compare high-density LS techniques for 

estimating stem diameters and assortment volumes. The study also presented an approach 

based on a combination of ALS and TLS (TALS) for more detailed forest mapping. Diameter 

distribution was predicted using DBH measurements from the TLS and harvester and DBH 

modelling results from ALS. Field measurements were used as reference for the DBH 

estimates. Timber assortment volumes were estimated using stem curve models and validated 

using harvester measurements.    
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The results showed that accurate tree-level timber assortment volume and diameter 

distribution estimations can be achieved using TLS and TALS. The RMSEs for sawlog 

volumes were 14.4%, 17.5%, 16.8% and 34.7% for field measurements, TLS, TALS and 

ALS, respectively. Field measurements were the most accurate but TLS and TALS were 

nearly as accurate. The accuracy of TLS-based methods can still be improved because the 

diameter measurements were performed manually and the comprehensive stem curve was 

not measured. Existing stem curve models were utilized along with the TLS because the 

automatic data processing was unavailable at the time and it is not feasible to manually 

measure stem curves from the point clouds for each single-tree. Results in substudy V 

confirmed that the accuracy of stem curve measurements can be improved using automated 

processing algorithm. 

Tree quality was found to significantly affect the timber assortment volume estimations. 

The measurement included 11 trees, of which part of the sawlog-sized trunks were degraded 

to pulpwood. The pulpwood volume accuracy (RMSE%) was 108.5%, 110.9%, 110.4% and 

109.1% for field measurements, TLS, TALS and ALS, respectively. The effect of quality was 

taken into account by removing these quality outliers and the pulpwood accuracies were 

significantly improved. The corresponding RMSEs were 57.6%, 60.1%, 59.3% and 57.1%. 

The TALS combination method could be an interesting option for more detailed single-

tree mapping, because the method reduces the amount of required modelling and the most 

important tree attributes (DBH, height and stem curve) can be measured directly from the 

point clouds. The biggest challenge is the location accuracy of each dataset, which should be 

resolved before this approach can be fully utilized in operational forestry.  

 

 
Figure 12. The saw wood volume distribution of a harvester (bars), field measurements 

(line), TLS measurements (dashed line), TALS measurements (dotted line) and ALS 

(dashed/dotted line). The x-axis presents the saw wood volume classed in 200 dm3 intervals 

and the y-axis (n) present the number of trees belonging to specific saw wood volume class.  
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Estimation of timber quality of Scots pine with terrestrial laser scanning 

 

Timber quality is an essential attribute to wood procurement planning in addition to available 

timber quantities because the technical quality of standing timber affects the production 

potential and possible raw material value. Scots pine quality is of particular interest in the 

Nordic countries, due to the strong association between quality and product recovery. The 

most influential quality attribute has been the distribution and size of the dead branches along 

the stem (e.g. Uusitalo 1997). Tree quality attributes are currently not included in preharvest 

information due to the high costs of the required fieldwork. The objective of substudy IV was 

to assess the accuracy of external quality attributes measured from TLS and the classification 

of trees according to three to five different quality categories. Results were compared to the 

quality classification conducted in the field by ocular assessment using the guidelines of the 

NFI of Finland.  

The RMSEs for tree quality attributes, the lowest living and dead branches were 9.6% 

and 42.9%, respectively. The high measurement error for the lowest dead branch was caused 

by the shadowing effect in the point cloud data. The study stand was partly covered with 

dense understorey spruce layers, which caused gaps in the point cloud data, especially in the 

lower parts of the stems. The quality classification accuracies were promising despite this 

lower accuracy in the dead branch measurement. The trees were classified into three 

operationally important quality classes (high-quality timber, timber and pulpwood) with 

accuracies of 95.0% and 83.6% based on field- or TLS-measured tree attributes, respectively. 

The classification accuracies were slightly decreased if the amount of quality classes was 

increased to the five classes used in NFI. Respective overall accuracies were 87.1% and 

76.4%.  

TLS accuracies could be improved by minimizing the shadowing effect in data 

acquisition and by measuring more detailed quality attributes utilizing automatic stem, 

canopy shape and branch modelling. This would include automatic stem form measurements 

and canopy shape (e.g. volume and maximum diameter) and branch size distribution, which 

could be measured from the point cloud. Further development is therefore needed but tree 

quality information could bring additional value for preharvest measurements based on LS 

techniques. 

 

 

Automated stem curve measurement using terrestrial laser scanning 

 

The automatic processing of the TLS point cloud is of high interest and a prerequisite for 

bringing TLS-based techniques to operational forest mapping. The amount of TLS-collected 

data is substantial and data processing should be as fluent as possible. Stem curve is one of 

the most important tree attributes affecting the timber assortment accuracy as well as tree 

quality estimations. The goal of substudy V was to develop and demonstrate automatic and 

noninvasive stem curve measurements from TLS point clouds. This accuracy was compared 

to widely used stem curve models (Laasasenaho 1982) and manual measurements of the TLS 

point cloud. 

The results showed that stem curve and volume can be measured accurately using the 

developed automatic procedure. The DBH measurement accuracies for automatic and manual 
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measurements were 8.2 mm and 12.6 mm, respectively. The RMSE of stem curve was 11.3 

mm for automatic measurements and 10.3 for manual measurements. The manual 

measurements were thus less capable of measuring the diameter of the upper tree sections. 

Automated stem curve measurements could measure diameters up to 65.8% and 61.0% of 

the total height of Scots pine and Norway spruce, respectively. Corresponding values for 

manual measurements were 47.1% and 27.8%. Figure 13 presents the automatic stem curve 

model for a Scots pine tree.  

The automatically measured stem curve allows the direct calculation of stem volume 

using the fitted 3D cylinders. An overall RMSE of 9.47% (29.29 dm3) was achieved using 

automatic stem curve as a basis for volume calculation. Existing volume models 

(Laasasenaho 1982) with field-measured DBH, height and D6 resulted in a similar accuracy 

and in a slightly lower accuracy with DBH and height (appr. 1.1% lower), respectively. 

Substudy V demonstrated that stem curve and volume can be measured automatically and 

with high accuracy. Accurate and automatic stem curve measurements can be utilized as a 

basis of timber assortment volume and quality estimations but also in stem biomass 

modelling.  

 

 
Figure 13. Stem curve modelling of a Scots pine tree. (a) Original point cloud, (b) 

recognized stem points and (c) automatically reconstructed stem curve model. 

 

 

 



37 
 
 

 
 
 

Diameter distribution estimation with laser scanning-based multisource single-tree 

inventory   

 

State-of-the-art ALS techniques in single-tree-level forest mapping have two major issues 

that have currently not been fully solved: (1) the detection of non-dominant (small) layer 

trees and (2) tree species recognition. The objective of substudy VI was to demonstrate the 

use of the MS-STI technique, originally introduced by Vastaranta et al. (2014) and Saarinen 

et al. (2014), for predicting the  diameter distribution in various forest conditions. MS-STI 

reduces the effect of two ITD-based issues mentioned beforehand. The method relies on 

accurate treemaps measured e.g. with TLS, MLS or a harvester. Here the required treemaps 

were produced using automatic TLS data processing. Automatic data processing and DBH 

measurement were also validated in varying forest conditions. The study was conducted 

using 27 sample plots from which TLS data was collected (see the Materials section). 

An automatic processing algorithm of the TLS point cloud data detected and matched 

71.2% of the reference trees within the sample plots. Tree detection and matching accuracies 

were highest (87.1%) in old-growth sample plots ready for final felling if tree density was 

considered. If the reference data was stratified by the main tree species of the sample plots, 

the highest detection and matching accuracies were found in Norway spruce-dominated 

(77.0%) or mixed (77.3%) sample plots. The overall accuracy (RMSE) of DBH of the 

matched trees was 42.5 mm. Within the data, 8 outlier trees were detected where DBH was 

significantly overestimated due to data matching errors, tree grouping or noise proximal to 

the tree trunks. The DBH RMSE was improved by 11.4% to 16.7 mm by removing these 

outlier measurements. The highest DBH measurement accuracies were found in mature 

forests (tree densities between 500 and 900 trees/ha). DBH was highest in deciduous trees-

dominated or mixed sample plots if the main tree species was taken into account. Results 

show that both tree detection and matching and DBH measurement accuracy are highly 

dependent on forest structure. RMSE values were slightly lower or at similar level than 

reported in previous studies, but substudy VI presents the first results of TLS tree detection 

and DBH measurements in diverse forest conditions.  

MS-STI proved an accurate and efficient method for DBH and diameter distribution 

estimation. The overall accuracy (RMSE) of DBH was 36.9 mm. Results showed that DBH 

accuracy decreased if tree density (trees/ha) increases. Highest accuracies were found in old-

growth forests (tree densities less than 500/ha, Figure 14). MS-STI resulted in the best 

accuracies in Norway spruce-dominated forests (RMSE of 29.9 mm). The fit of predicted 

diameter distributions were assessed by calculating error indices suggested in Packalén and 

Maltamo (2008). The used error indices compare the true and the predicted stem number in 

a specific classes. Error indices are scaled between 0 and 1, 0 meaning a perfect fit and 1 

meaning that the distributions do not overlap at all. Both methods, MS-STI and automatic 

TLS measurements, performed well, resulting in error indices of 0.11 and 0.06, respectively. 

Compared to the error indices reported in Packalén and Maltamo (2008), results in substudy 

VI were slightly better. Vastaranta et al. (2014) reported similar error indices of 0.10, 0.11 

and 0.15 depending on the used datasets, although the method was tested in a single Scots 

pine-dominated stand with 144 sample trees. Results in VI were therefore promising, 

especially due to the more diverse forest conditions.  
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The challenge of the MS-STI approach is the combination of TLS-and ALS-detected trees 

due to the different view perspective (ground or air). The automatic segmentation of single 

trees from ALS point clouds was combined with TLS-detected trees using location 

information in the present study. If two or more trees were found inside a single ALS 

segment, the segment was equally divided. Features calculated from the divided segments 

might not describe the tree characteristics as well as the automatically extracted segments. 

The possibility of using modified TCA (Breidenbach et al. 2010) could therefore be a vital 

option for the MS-STI approach in the future. The possibility of creating a new TLS-aided 

ALS segmentation process should also be considered. 

   

 

 
Figure 14. DBH distribution stratified by the tree densities of the sample plots.  
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CONCLUSIONS 
 
 

Forest resource mapping, management planning and decision-making relies on the precise 

knowledge of forest structural attributes, such as biomass, logging recoveries and quality of 

the available timber. Accurate and unbiased forest resource information also plays an 

essential role in forest organizations when planning and optimizing wood supply chains and 

the flow of raw materials from the forest to the end product. A typical approach in the forest 

mapping of large areas has been based on generalizing field sample plot measurements using 

coarse- or medium-resolution RS. The coarse resolution of the RS data will cause challenges 

in forest attribute estimation especially in smaller target areas. Forest resource information 

systems have currently advanced to a state where substand-level information can be used. 

However, decision-making is still mainly based on stand-level mean attributes, in which a 

great deal of information concerning forest structure variability is lost as shown in Figure 1. 

The requirement for more detailed forest resource information especially at single-tree-level 

is growing, particularly from more mature stands where the added value is the highest.  

Traditional field measurements at single-tree-level are costly to acquire, especially if tree 

quality, biomass and timber assortments are considered. These attributes have therefore been 

estimated using existing models and easily measurable tree attributes (tree species, DBH and 

height). The drawback to this approach is that the models might not exist in the target area or 

the existing models are site-specific causing estimation uncertainties. For example 

Kalliovirta and Tokola (2005) developed DBH models for Scots pine, Norway spruce and 

birch by dividing Finland into four regions, to which model parameters were estimated 

separately.    

The use of 3D RS techniques, especially LS techniques, have revolutionized forest 

mapping applications in the past 15 years. The use of high-density 3D LS systems could open 

new possibilities for measuring and modelling single-tree attributes accurately and more 

efficiently. The focus of LS development has mainly been on stand- or plot-level forest 

attribute estimation and the method accuracies are rarely validated at single-tree-level. 

Single-tree methods have not been adopted to operational use due to the higher costs of data 

acquisition and more demanding data processing. Challenges in data processing have 

included e.g. the lack of automatic processing tools, tree species recognition and tree 

detection accuracy.  

The main objectives of the present thesis were to develop active 3D RS methodologies 

for single-tree-level forest mapping. In the six different substudies (I–VI)  

 novel methods to model single-tree AGB using TLS-and ALS-derived metrics 

were demonstrated,  

 the accuracy of logging recovery estimation using high-density LS techniques 

and MS approach was assessed, 

 the first results on external tree quality classification from harvesting sites using 

TLS data were presented,  

 an automatic stem curve measurement technique from a TLS point cloud was 

demonstrated and validated against manual point cloud measurements and 

accurate field-measured reference and  
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 the accuracy of the MS-STI methodology was assessed in diverse forest 

conditions. 

Current AGB models are mainly based on DBH, height and tree species information and 

do not utilize canopy size information, which could particularly improve canopy biomass 

estimation accuracies. AGB model development has also mainly been based only on field 

measurements without utilizing any RS data. Substudies I and II therefore concentrated on 

assessing the accuracy of LS-derived metrics in AGB modelling. Total AGB was estimated 

with an RMSE% of 12.9% and 11.9% for Scots pine and Norway spruce, respectively using 

TLS. TLS-based biomass models significantly improved the accuracy of component-level 

AGB estimation compared to existing biomass models. Based on these results we suggest the 

use of stem curve and crown size geometric features in AGB estimation rather than statistical 

3D point metrics due to the dependency of statistical 3D metrics on various scanning 

parameters. Srinivasan et al. (2014) confirmed this suggestion and found the highest 

correlations from geometric features derived from TLS point clouds.  

ALS resulted in slightly lower RMSE%-values of 26.3% and 36.8% for the same tree 

species compared to the acquired results with TLS. The developed ALS models improved 

the accuracy for estimating all Scots pine biomass components and total and stem biomass 

of Norway spruce, compared to existing biomass models with ALS-derived DBH and height. 

The achieved results were encouraging but further development is required due to the high 

dependency of the derived metrics and the scanning parameters. In all, ALS-based AGB 

models would provide the means for estimating AGB biomass from areas that are difficult to 

reach. An interesting option for future development would be to combine TLS and ALS at 

the single-tree-level, where the required reference would be measured using TLS and wall-

to-wall estimation would be carried out with ALS. 

The goal of substudies III and IV was to predict timber assortment volumes and tree 

quality information using high-density LS data. Results showed that accurate tree-level 

timber assortment volumes can be achieved using TLS or TALS, especially for the accurate 

estimation of log volume. Sawlog volumes were estimated with RMSE% of 17.5% and 

16.8% with TLS and TALS, respectively. ALS resulted in the lowest estimation accuracies 

for DBH and the timber assortments, because DBH estimation in the ALS technique relies 

on developed DBH models. The TALS combination method is therefore an interesting option 

for more detailed tree mapping. TALS combines direct tree stem measurements from TLS 

and the more accurate tree canopy height measurements from ALS. With this combination, 

tree attributes can also be predicted for larger areas. The biggest challenge of TALS is the 

location accuracy of each dataset. This should be resolved before such MS approaches can 

be fully utilized in operational forestry.  

Tree quality highly influenced timber assortment estimation accuracy in substudy III, 

where sawlog-sized tree sections were degraded to pulpwood by quality defects. Tree quality 

attributes were successfully measured in substudy IV and the trees were classified into 

different operationally important quality classes with high accuracy. Quality classification 

accuracies varied between 76.4–83.6% depending on the amount of quality classes. Based on 

the results of substudies III and IV, we suggest the development of a new bucking method 

founded on TLS data that can utilize detailed stem curves measurements and various quality 

features, e.g. branch distribution along the trunk. 

Substudies V and VI presented new automatic processing tools for TLS data and the MS 

approach for a more detailed prediction of single-tree attributes. Automatic processing of 

TLS data was demonstrated to be effective and accurate and could be utilized to make TLS 



41 
 
 

 
 
 

measurements more efficient in the future. Accuracies of ~ 1 cm were achieved with the 

automatic stem curve procedure for Scots pine and Norway spruce trees. The automatic stem 

curve algorithm was able to measure a higher number of diameters than manual 

measurements. Manual measurement was difficult to conduct especially in the upper parts of 

the sample trees.  

The automatic processing algorithm of TLS point cloud data are crucial if TLS and MS-

STI are to be used in operational forest mapping. The automatic method applied in substudy 

VI performed accurately in the diverse forest conditions. The method detected and matched 

71.7% of the reference trees within the sample plots. The overall DBH accuracy (RMSE) of 

the matched trees was 16.7 mm. Results showed that both tree detection, matching and DBH 

measurement accuracy are highly dependent on forest structure. Further testing with larger 

datasets is still required to confirm and further assess the effect of the processing algorithm 

and forest structure on the measurement accuracies.  

MS-STI proved an accurate and efficient method for DBH estimation and for predicting 

diameter distribution. DBH estimation accuracies varied between 1.4–4.7 cm depending on 

tree density and main tree species with an overall DBH accuracy (RMSE) of 36.9 mm. 

Results showed that DBH accuracy decreased if tree density (trees/ha) increases. The highest 

accuracies were found in old-growth forests (tree densities less than 500/ha, Figure 14). MS-

STI resulted in the best accuracies in Norway spruce-dominated forests (RMSE of 29.9 mm). 

Diameter distributions were predicted with low error indices resulting in a good fit compared 

to the reference. Based on results from our study and Saarinen et al. (2014), diameter 

distribution estimation with MS-STI is highly dependent on forest structure and the accuracy 

of the used treemaps. The most important development step for the MS-STI and automatic 

measurements of TLS point clouds is to develop tree species recognition methods and further 

develop tree detection techniques. The possibility of using MLS or harvester data as a basis 

for the required treemaps should also be assessed in the future.  

This thesis developed methods for detailed single-tree-level forest mapping using high-

density LS techniques. The substudies presented new and novel methods and results for 

single-tree AGB modelling, external tree quality classification, automatic stem 

reconstruction and MS approaches. Achieved results indicated that high-density LS 

techniques and MS approaches are a vital option for predicting the following single-tree-level 

attributes: (1) tree biomass, (2) timber assortments, (3) external tree quality, (4) stem curve 

and (5) diameter distribution. Technological development has taken major leaps towards 

more operational platforms in recent years by introducing new TLS technology combined 

with digital photography to provide colour (RGB) information to the point clouds, MLS (see 

e.g. Kukko 2013) platform, unmanned aerial vehicle (UAV), hyperspectral laser (see e.g. 

Puttonen et al. 2010) etc., which could be used in further developing the presented methods 

and especially tree species recognition. The results achieved in the substudies were promising 

but the suggested methodologies warrant further development and the validation if these 

techniques could be used in operational forest mapping. Important research subjects in the 

near future include: (1) to develop tree species recognition method based on LS techniques 

or MS approach, (2) to resolve the challenges in data matching in MS application, (3) to 

further develop automatic data processing of TLS point clouds to enable automatic 

measurements of external tree quality and study the link between external and internal tree 

quality measured in saw mills, (4) to further develop robust LS-based AGB models utilizing 
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automatically derived tree size and volume attributes from LS data with tree species-specific 

wood density and (5) to test the developed methods in the new data acquisition platforms 

(e.g. MLS and UAV data). The costs of the high-density data and equipment are constantly 

decreasing, enabling more efficient and higher detail data acquisition. New technologies, 

such as MLS, UAV and high resolution photogrammetry will provide new possibilities for 

MS-based forest mapping. In the forest resource system of the next generation, single-tree-

level information will play an important role, especially in more mature forests where the 

added value of more detailed information is the highest.  
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