
 

 

 Dissertationes Forestales 193 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Airborne laser scanning based forest inventory for forest 

management by applying novel metrics and multiple data 

sources 
 

 

 

Inka Pippuri 

School of Forest Sciences 

Faculty of Science and Forestry 

University of Eastern Finland 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Academic dissertation 
 

To be presented, with the permission of the Faculty of Science and Forestry of the 

University of Eastern Finland, for public criticism in auditorium BOR100 of the University 

of Eastern Finland, Yliopistokatu 7, Joensuu, on 17
th

 June 2015, at 12 o’clock noon. 



2 

 

Title of dissertation: Airborne laser scanning based forest inventory for forest management 

by applying novel metrics and multiple data sources  

 

Author: Inka Pippuri 

 

Dissertationes Forestales 193 

 

http://dx.doi.org/10.14214/df.193 

 

Thesis supervisors: 

Prof. Matti Maltamo 

School of Forest Sciences, University of Eastern Finland, Joensuu, Finland 
Docent, Dr. Petteri Packalen 

School of Forest Sciences, University of Eastern Finland, Joensuu, Finland 
Prof. Heli Peltola 

School of Forest Sciences, University of Eastern Finland, Joensuu, Finland 

 

Pre-examiners: 

Prof. Terje Gobakken 

Norwegian University of Life Sciences, Ås, Norway 
Dr. Jari Miina 

Natural Resources Institute Finland, Joensuu, Finland 

 

Opponent: 

Prof. Annika Kangas 

Natural Resources Institute Finland, Joensuu, Finland 

 

ISSN 1795-7389 (online)  

ISBN 978-951-651-475-1 (pdf)  

 

ISSN 2323-9220 (print)  

ISBN 978-951-651-476-8 (paperback) 

 

2015 

 
Publishers: 

Finnish Society of Forest Science 

Natural Resources Institute Finland 

Faculty of Agriculture and Forestry of the University of Helsinki 

School of Forest Sciences of the University of Eastern Finland 

 

Editorial Office: 

Finnish Society of Forest Science 

P.O. Box 18, FI-01301 Vantaa, Finland 

http://www.metla.fi/dissertationes 



3 

 

 

 

Pippuri, I. 2015. Airborne laser scanning based forest inventory for forest management by 

applying novel metrics and multiple data sources. Dissertationes Forestales 193. 41 p.  

http://dx.doi.org/10.14214/df.193  

 

 

ABSTRACT 
 

 

The aim of this work was to develop airborne laser scanning (ALS) based forest inventory 

for practical forest management by applying novel horizontal metrics and multiple data 

sources. In particular, this work examined classification of forest land attributes (study I), 

prediction of species-specific stand attributes (study II) and detection of spatial pattern of 

trees (study III) and need for silvicultural operations, such as first thinning (study III) and 

tending of seedling stand (study IV). An area-based approach was used together with 

different classification or prediction methods in all studies. Multiple data sources were used 

to calculate a combination of predictor variables: in study I ALS data and satellite images, 

in study II ALS data, aerial images and stand register data, and in study IV ALS data and 

aerial images. The applicability of horizontal ALS-based metrics was tested in studies I and 

III. In study I the applicability of field data from national forest inventory of Finland as a 

training data was also tested. The classification of land use/land cover classes was highly 

accurate. Also, classification of site fertility type, peatland type and drainage status 

succeeded moderately well. The prediction of species-specific stand attributes of several 

tree species was more accurate when tree species proportions from existing stand register 

data were used in prediction. The classification accuracies were very high for the spatial 

pattern of trees and need for first thinning, and moderately high for the need for tending of 

seedling stands. Horizontal ALS-based metrics were the most applicable predictor variables 

in classification of land use/land cover, main land type, drainage status, detection of spatial 

pattern of trees and need for first thinning. To conclude, this work provided valuable 

methodological know-how on the applicability of novel horizontal ALS-based metrics and 

the use of multiple data sources for cost-effective forest inventory and planning. Some of 

the methods have already been implemented in practical forest inventories in Finland. 

 

Keywords: ALS; Forest inventory; Forest management; Horizontal metrics, Multiple data 

source; Silvicultural need 
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1 INTRODUCTION 

 

 
1.1 Practical ALS-based forest inventory in Finland 

 

In practical forestry, accurate information about growing stock and stand characteristics are 

crucial for successful forest management and planning. In Finland this information was 

earlier collected using a stand-wise field inventory method based on placing of angle count 

sample plots and partly visual assessment (Koivuniemi and Korhonen 2006). During the 

2010s, that method has been replaced with a new inventory system using a combination of 

airborne laser scanning (ALS) data, aerial images (AI) and field measurements (Maltamo 

and Packalen 2014). Compared to the traditional field inventory, based on the new ALS-

based inventory system, stand attributes can be determined for large areas objectively, 

accurately and in a cost-efficient way (e.g. Næsset 2002; Næsset et al. 2004; Jensen et al. 

2006; Packalén and Maltamo 2007).  

ALS is an active remote sensing (RS) technology (Wehr and Lohr 1999), producing a 

three-dimensional description of forest canopy, which has made it an important technique 

for forest inventories. Different ALS-based metrics are calculated from the ALS data to 

predict characteristics of a target. The inventory methods can be divided into two different 

kinds of approaches depending on the inventory unit. In an area-based approach (ABA) 

(Magnussen and Boudewyn 1998; Næsset 2002), which usually uses low pulse density 

ALS data, the inventory unit is usually a plot, a microstand or a stand. Another approach 

used to produce forest information is individual tree detection (ITD), which uses high 

density pulse data (e.g. Hyyppä and Inkinen 1999; Popescu et al. 2003). Both approaches 

can also use spectral data as additional information.  

Several studies have shown that ABA provides reliable and unbiased estimates of 

growing stock, and nowadays, it is the main approach in practical forest inventories 

(Næsset et al. 2004; Maltamo and Packalen 2014). For example, in Finland ABA has 

provided more accurate results for total attributes of growing stock compared to earlier field 

inventory (Suvanto et al. 2005). Also, accuracies of species-specific attributes are partly 

comparable with the old inventory method. The accuracy of tree and stand attributes based 

on ITD has also been relatively good. But difficulties in tree detection and prediction of 

diameter together with higher data acquisition costs have limited the operational use of 

ITD.  

In the ABA, the prediction of forest attributes is based on the statistical relationship 

between forest variables measured in the field and predictor features derived from the ALS 

data (Magnussen and Boudewyn 1998; Næsset 2002). Also, spectral RS data or other 

existing information can be utilised as additional information. RS features are extracted 

from the same area where forest variables are measured, e.g. plot. In this approach, first 

statistical dependency between forest variables and RS features are modelled, and then 

forest variables are predicted for the area of interest, e.g. grid-cell, using this dependency. 

Metrics calculated from the height, density and intensity distribution of ALS point cloud 

are the most often used as predictor variables in the ABA studies (Næsset et al. 2004; 

Vauhkonen et al. 2014A). Additionally, some horizontal metrics calculated from ALS-

based surfaces like the digital terrain model (DTM) or canopy height model (CHM) have 

been tested (Van Aardt et al. 2008; Korpela et al. 2009; Korhonen et al. 2011; Vastaranta et 

al. 2012; Racine et al. 2014). Other information used together with the ALS metrics can be, 

for example, spectral and texture metrics, which are calculated from AI or satellite images 
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(SI) (e.g. Packalén and Maltamo 2007) or information from existing stand register data (e.g. 

Maltamo et al. 2006; Närhi et al. 2008). 

Estimation methods can be divided into parametric regression methods and non-

parametric nearest neighbor (NN) methods (Vauhkonen et al. 2014A). Prediction unit in 

ABA is usually a circular plot, grid-cell, microstand or a stand. Microstand is a 

homogeneous forest stand, usually smaller in size than a normal stand (Hyvönen et al. 

2005). The size of the prediction unit depends on the purpose of inventory, and it usually 

corresponds to the size used in training data. Wall-to-wall prediction for large areas is 

usually done using a grid approach.  

 The new ALS-based inventory system in Finland uses a combination of low density 

ALS data, AI, field measurements and the ABA as the prediction method. Accurately geo-

referenced field sample plots (usually 9 m radius circular plot) should represent the whole 

variation of inventory area including different developing stages of forest and tree species. 

For example, in the inventory area of 1000–5000 km
2
, about 500–700 plots are placed into 

young, maturing and mature forests and 100–150 in seedling stands, but very often small 

seedling stands (height < 1.3 m) are left out from sampling. Both leaf-on and leaf-off data 

are used, but they cannot be mixed in the same project, except if both datasets cover wall-

to-wall same inventory area (Villikka et al. 2012). Leaf-on data is collected in the summer, 

when deciduous trees are in leaf. In the ideal case, ALS data, AI and field data are collected 

in the same year, but often there is a time difference of one year between acquisitions 

(Maltamo and Packalen 2014).  

Species-specific stand attributes are predicted based on metrics calculated from ALS 

point cloud data and AI (Packalén and Maltamo 2006, 2007, 2008). The spectral and 

textural metrics from AI are used to improve the separation between tree species. In the NN 

imputation, the species-specific stand attributes and sum attributes are predicted 

simultaneously, which guarantees more logical results. Also, prediction of species-specific 

diameter-distributions is possible using NN (Packalén and Maltamo 2008). Stand attributes 

are predicted wall-to-wall in a whole inventory area using the grid-cells size of 16 x 16 m, 

which approximately corresponds to the size of field plots. The mean values of grid-cells 

within each stand are calculated to obtain the stand level results. The CHM is used parallel 

with the orthorectified AI in manual stand delineation. However, semi-automated stand 

delineation by means of segmentation is also established as part of the inventory. 

Segmentation is usually used to create homogeneous microstands from which final stands 

are composed for operational use (Maltamo and Packalen 2014). In Finland, most actors of 

practical forestry have updated their inventory and planning systems to support the new 

ALS-based inventory method. Nowadays, this inventory system is applied for almost 

3,000,000 ha annually. 

 

 

1.2 Predicting forest land and stand attributes  

 

Despite the cost-effectiveness and estimation accuracy of growing stock attributes, the 

ALS-based inventory system has not yet fulfilled all the expectations and needs of practical 

forest management. In this respect, the application of novel horizontal ALS-based metrics 

together with multiple data sources could offer new possibilities to predict in an accurate 

and cost-efficient way the forest land and species-specific stand attributes, and to detect the 

spatial pattern of trees and need for silvicultural operations.  

Estimating forest land attributes. Forest land and site type classifications are used both 

at the national and international level to monitor the amount, properties and state of forests. 

In forestry, different classifications of forest land attributes, like main type, site fertility 
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type, peatland type or drainage status are also important, as they form the basis for 

prediction of forest growth and silvicultural operations. In Finland, forest land and site 

fertility type information is collected in the National Forest Inventories (NFI) and in the 

regional stand-wise forest inventories supporting forest planning. In practice, most of the 

forest land attributes are collected from existing stand register data, not estimated based on 

ALS data. 

There are several studies where forest land and different forest types have been 

discriminated using ALS and other RS data, but classification of different forest land 

attributes has gotten much less attention. In some land use studies, wetlands and peatland 

(swamp) forests have been mapped using RS with varying results (e.g. Maxa and Bolstad 

2009; Sader et al. 1995; Townsend and Walsh 2001). In study of Maxa and Bolstad (2009) 

use of lidar data (DTM) together with satellite images improved the wetland/upland 

distinction. So far, in the ALS-based studies, mineral soils and peatlands or different 

drainage status of forests have not been separated from each other. However, recently 

Dirksen (2013) discriminated peatland (swamp) forests and upland forests (non-paludified, 

mineral soil) using ALS point cloud metrics with accuracy of 54-62%. Dirksen’s study 

showed that vegetation in peatland forests was lower than in upland forests. 

Site classification in Finland uses Cajander’s (1926) forest site fertility type theory, 

which is based on understory vegetation. Even though the stand attributes (volume, basal 

area, mean height and mean diameter of growing stock) can be predicted with a high 

accuracy in the ALS-based forest inventory, classification of site fertility types has only 

been tested in a few studies. Vehmas et al. (2011) classified forest site fertility types in 

mature forests on mineral soils using ALS point cloud metrics with kappa-value of 0.47. 

Korpela et al. (2009) tested ALS point cloud and surface (DTM) metrics in the 

classification of mire habitats, being able to classify 21 mire types with a kappa of 0.25–

0.62. Corresponding kappa-values for the main mire types (treeless, composite and 

forested) were 0.32–0.67 and for dominant tree species (spruce, pine and spruce-pine) 

0.66–0.81, respectively. Recently, the potential of ALS point cloud metrics to identify herb-

rich forests has also been studied (Vehmas et al. 2009).  Overall accuracy (OA) was 89 % 

and herb-rich forests were classified correct in 65 % of cases.  

Worldwide, a more common method for site classification is a site index, which is 

based on the dominant height of growing stock at a certain age. For instance, Gatziolis 

(2007) estimated the dominant height and site index using ITD, and Packalén et al. (2011) 

did it using ABA. Holopainen et al. (2010) used dominant height predicted from the ALS 

data and the stand age from stand register data to determine the site indices and then 

converting them into site types. They found a kappa-value of 0.60 for five site fertility 

types. 

Prediction of forest land attributes using ALS-based inventory has been studied only 

little and results of the site type classifications are not yet in a sufficient level.  Hence, RS 

based prediction of forest land attributes such as separation of mineral soils and peatlands, 

classification of forest site fertility type, peatland type or forest drainage status needs more 

careful examination. In this respect, the application of new horizontal ALS-based metrics 

calculated from different ALS-based surfaces and combined used of multiple data sources 

like ALS data, SI and field plots from NFI could enable more accurate and cost-efficient 

classification of forest land attributes. 

Estimating species-specific stand attributes. In forest management and planning, tree 

species information is needed for determining species-dependent forest treatments and for 

predicting species-specific growth and yield. So far, in the Finnish ALS-based forest 

inventory system, only Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) 

Karst) and deciduous tree species as one stratum have been considered. This is because 
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these conifers represent together about 80% of the total growing stock, and the remainder 

comprises deciduous tree species (mainly Betula spp.) (Finnish Statistical Yearbook of 

Forestry 2014). In general, it is also extremely difficult to discriminate deciduous species 

by using metrics of AI and ALS data.  

The ABA, which uses the NN method to predict species-specific stand attributes, has 

been mainly developed by Packalén and Maltamo (2006, 2007, 2008). In this approach, 

point cloud metrics from ALS data, and spectral and textural metrics from AI are used as 

predictor variables. The main tree species is usually predicted correctly but the error on 

minor tree species is very high. In the study of Packalén and Maltamo (2007), accuracies 

for species-specific volume at stand level were 28, 33 and 62% for Scots pine, Norway 

spruce and deciduous species. Wallenius et al. (2012) found similar values for pine and 

deciduous trees in microstand level, but root mean square error (RMSE) of spruce was a bit 

higher. Packalén et al. (2009) slightly improved the prediction accuracy by linking ALS 

points to the pixel values of unrectified AI. Similarly, Maltamo et al. (2014) pre-classified 

data according to the main tree species and stand development stages. Niska et al. (2010) 

suggested neural networks as an alternative estimation method for NN, respectively. 

Recently Villikka et al. (2012) found leaf-off data to provide more accurate estimates than 

leaf-on data and discriminated between coniferous and deciduous trees even without the use 

of AI. Vauhkonen et al. (2012, 2013) found alphashape metrics and intensity distribution 

promising in tree species separation, respectively. 

In the management of urban forests, information on different tree species, including 

deciduous tree species (such as Quercus robur, Tilia cordata, Populus tremula, Alnus 

glutinosa, Betula pubescens and petula Pendula) and their proportions are needed in greater 

detail compared to the management of commercial forests. This is because in urban forests, 

the main focus is on landscape value, maintenance of biodiversity and providing protection 

from noise, wind and pollution instead of timber production (e.g. Robinette 1972; Miller 

1997). Despite this, the inventory system of urban forests has not yet considered different 

deciduous species in detail. 

There is some evidence that the ABA could separate different deciduous tree species, 

such as Fagus sylvatica and Acer speudoplatanus (Breidenbach et al. 2010A) or Betula spp. 

and P. tremula (Breidenbach et al. 2010B). In the study of Breidenbach et al. (2010A), the 

relative RMSE of species-specific plot volumes varied from 80 to 315% for Fagus 

sylvatica, P. abies, Abies alba, Pseudotsuga menziesii and Acer speudoplatanus. They also 

tested species-related variables from the inventory by compartments (e.g. forest type, age 

class), but only ALS-based predictor variables were selected in final models. In temperate 

and urban forests, ALS-based studies on several tree species have focused on tree species 

classification, not prediction of the species-specific stand attributes (e.g. Vauhkonen et al. 

2014B). 

Current ALS based inventory system cannot produce species-specific information with 

desired accuracy, despite several improvement attempts in research. One option to improve 

the prediction of species-specific stand attributes, especially in forests with several tree 

species in urban forests, could be the combined use of ALS data and existing stand register 

data. The species proportions with respect to basal area (or number of stems) can be 

regarded as the most reliable data in stand registers, because angle-count sampling used an 

old inventory system in Finland. The use of ALS data in conjunction with stand register and 

field data could also be an economically beneficial and viable solution. 

Estimating spatial pattern of trees. The spatial pattern of trees in a forest can be defined 

as the locations of the trees in relation to each other. It can be regular, random, clustered, or 

any combination of them (e.g. Pielou 1960; Tomppo 1986). The spatial pattern of trees, 

based on tree locations in a two-dimensional space, can be estimated statistically using 



13 

 

 

 

dedicated sampling designs or by measuring the exact locations of all trees. The scale used 

in the analysis also affects this classification. Spatial pattern has been proved to have a 

significant effect on tree growth, but because fieldwork for measuring the spatial pattern of 

trees is rather laborious and expensive, it has not been widely utilised in forestry 

applications, including prediction of growth and yield for forest planning (e.g. Kilkki et al. 

1985; Gavrikov and Stoyan 1995; Pukkala et al. 1998). In practical forestry, the spatial 

pattern of trees has been taken into account when determining the need for silvicultural 

operations like the need for tending of seedling stand or thinning. But, in such cases, spatial 

properties are evaluated visually, never measured or quantified.  

According to Coops and Culvenor (2000), it would be possible to estimate the spatial 

pattern of trees in a stand using local variance of simulated high spatial resolution imagery, 

if crown size is provided a priori. Spatial pattern of trees have also been estimated by 

segmenting single trees and calculating landscape metrics from AI (Uuttera et al. 1998). 

However, according to Uuttera et al. (1998), this approach was not viable because clustered 

spatial pattern were often misclassified as regular pattern, and regular pattern as random 

pattern. The most obvious way to use ALS data in the determination of the spatial pattern of 

trees would probably be ITD, where the positions of trees can be located (e.g. Mustonen 

2002). Packalen et al. (2013) tested ITD, semi-ITD and ABA for determining spatial 

pattern of trees with low results. In both ALS-based studies (Mustonen 2002; Packalen et 

al. 2013) it was found difficult to detect clustered spatial pattern of trees. The use of new 

horizontal ALS-based metrics, such as texture or landscape metrics, could be expected to 

offer possibilities for accurate and cost-effective classification of spatial pattern of trees in 

ALS-based forest inventory.  

 

 

1.3 Determining need for silvicultural operations 

 

Determining the need and timing for silvicultural operations, especially the need for tending 

of seedling stand and first thinning, has a great impact on the growth and dynamics of 

stands as well as amount and profitability of timber production over a rotation. In Finland, 

the determination of need for silvicultural operations is still partly done based on a stand-

wise field assessment. Determining the need for silvicultural operations is not explicit, for 

example, the need for the tending of seedling stands is usually evaluated based on stand 

density (trees per hectare), spatial pattern of trees, species proportions, height difference of 

deciduous and conifer trees, quality of seedlings and site fertility type. In the practical ALS-

based forest inventory system, the need for silvicultural operations can be determined by 

means of estimated stand attributes or through additional fieldwork.  

Several studies have examined the possibility of determining the need for silvicultural 

operations using the ALS data. For example, Kotamaa et al. (2010) defined the need for 

silvicultural operations based on stand-level tree diameter distributions derived from the 

ALS data with OA of 75% and kappa-value of 0.61. Nivala (2012) predicted need for fuel 

wood thinning and tending of seedling stands in young and seedling stands using point 

cloud metrics. His kappa-value using three classes was 0.65 and OA of 100 % for fuel 

wood thinning and 79 % for tending of seedling stands. Vastaranta et al. (2011) used ALS 

metrics to predict the thinning maturity with OA of 79% for stands with thinning need for 

10 years and 83% for stand with immediate thinning need. Halvarsson (2008) predicted a 

forest density index, which was linked to the thinning need (with R
2
 of 0.9). Predicting 

seedling stand attributes, especially density, (Næsset and Bjerkness 2001; Närhi et al. 2008) 

or detection of the need for tending of seedling stand (Närhi et al. 2008; Tahvanainen 2011; 

Nivala 2012) has been found more difficult to assess accurately. For example, Närhi et al. 
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(2008) and Tahvanainen (2011) classified the need for tending of seedling stand with 

kappa-values of 0.54 and 0.58. In study of Närhi et al. (2008), Tahvanainen (2011), 

Vastaranta et al. (2011) and Nivala (2012) direct prediction of need for silvicultural 

operation was found to be even better alternative than the prediction of stand attributes 

followed by the decision of silvicultural operation needs. Also use of existing stand register 

data has been tested in couple studies, but only in study of Närhi et al. (2008) existing 

information about stand age was utilized in prediction of seedling stand density. Low 

prediction accuracy of seedling stand attributes in earlier studies is one reason why seedling 

stands are still mostly field-checked. Another reason is that every 10 years repeated ALS-

based inventory is too rare for successful management of seedling stands with a high 

growth rate. 

The efficiency of forest inventory system could be enhanced if accurate determination 

of the need for silvicultural operations could be obtained in an ALS-based forest inventory. 

In this respect, the use of new horizontal ALS-based metrics, multiple data sources and 

direct prediction of tending or thinning need without predicting other stand attributes could 

improve the detection of need for silvicultural operations.  

 

 

1.4 Objectives   

 

The overall aim of this work was to develop ALS-based forest inventory for practical forest 

management by applying novel horizontal metrics and multiple data sources. In particular, 

this work examined the classification of forest land attributes (study I), prediction of 

species-specific stand attributes (study II), detection of spatial pattern of trees (study III), 

and the need for silvicultural operations, such as first thinning (study III) and tending of 

seedling stand (study IV). The specific objectives of the individual studies were: 

 

 

I to examine the success of classification of forest land attributes using ALS data, 

satellite images and sample plots from NFI as training data and to test 

applicability of horizontal ALS-based surface metrics in the classification of 

forest land attributes, 

 

II to examine the success of prediction of species-specific stand attributes using a 

combination of ALS and existing stand register data in urban forests, 

 

III to identify  point cloud metrics and horizontal texture and landscape metrics for 

determination of spatial pattern of trees and need for first thinning, and to study 

if clustered spatial pattern of trees and the need for first thinning can be 

separated from other spatial pattern and the need for thinning classes, and 

 

IV to evaluate the applicability of high resolution remote sensing data in seedling 

stand inventory and test direct classification of seedling stands into tending need 

classes without predicting other stand attributes. 
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2 MATERIALS 

 

 
2.1 Study areas and field data 

 

Study areas. Experimental work was carried out in four different study areas (Figure 1). 

Forests in Päijät-Häme (study I), Janakkala (study III) and Joutsa (study IV) can be 

considered as typically managed boreal forests dominated by Norway spruce and Scots 

pine. The study area in Päijät-Häme also included agricultural lands, water (lakes) and built 

areas. The Turku study area (study II) belongs to the hemiboreal vegetation zone, where 

hardwoods occur abundantly and mixed forests of coniferous and deciduous trees are more 

common than in typical managed boreal forests. The Turku study area consisted also forests 

both in urban areas and the countryside. A summary of data used in different studies I-IV is 

shown in Table 1.  

Field data. In study I, field data of 828 plots were collected in 10
th

 and 11
th

 NFI during 

2008-2012. The centres of sample plots were located in the field using raw GPS (global 

positioning system) positions according to instructions of NFI of Finland (VMI11 maasto-

ohje 2009). In this study, plots that had only one forest stand or national land use/land cover 

(LU/LC) class within the 12.52 m radius were utilised. The following classifications 

determined for each plot were used: national and FAO LU/LC class, main type, site 

(fertility) type, peatland type and drainage status. Classifications are determined for the 

forest stand, or the parcel of land use class, in which the centre point of the plot is located. 

In the final classification, national LU/LC class included following classes: forestry land, 

agricultural land and class built. FAO LU/LC classes were forest and non-forest. The main 

type consisted of mineral soil and peatland. Forest site type classes were very-rich, rich, 

medium, poor and very poor. Site types were also classified into three classes when very-

rich and rich were combined as well as classes poor and very poor. Each site type class 

indicated the site fertility of mineral soils or the corresponding peatlands. Peatland classes 

considered were spruce peatland, pine peatland and open peatland, respectively. Drainage 

status was divided into classes undrained and drained.  

In study II, 205 circular plots were measured in summer 2010 from stands with different 

developing stages and dominant tree species. Differential global positioning system 

(DGPS) was used to determine the position of the centre of each plot. The diameter at 

breast height (DBH) and tree species was measured from each tree with DBH greater than 5 

cm inside the 9 m radius plot. Tree species were divided into seven (P. sylvestris, P. abies, 

Betula sp., Q. robur, P. tremula, A. glutinosa and other deciduous trees) and three (P. 

sylvestris, P. abies and deciduous trees) species strata. These species were selected because 

they were the most dominant tree species in the stand register data. The basal area by tree 

species and total basal area were calculated for each plot. Validation data of 52 forests 

stands (size 0.5-2 ha) were measured in summer 2012, including stands dominated by pine, 

spruce, hardwoods and other deciduous trees. In this thesis hardwood species include Q. 

robur, T. cordata, Fraxinus excelsior, A. platanoides and Ulmus spp. Species-specific basal 

areas were calculated based on fifteen angle count sample plots systematically placed for 

each stand. Tree species proportions (TSP) from existing stand register data were utilised 

using same tree species strata (seven and three) as in training and validation data. Existing 

stand register data was collected from 1990 to 2002 and updated to June 2010 using growth 

models (Hynynen et al. 2002). 
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Figure 1. Location of study areas. 
 
 
Table 1. Summary of data used in different studies (I-IV), including ALS data properties. N = 

number of, RS = remote sensing data. ALS = airborne laser scanning, AI = aerial images, SI 
= satellite images, CV = cross-validated reference data. 
 

Study I II III IV 

Location Päijät-Häme Turku Janakkala Joutsa 
N plots/segments 77-828 205 28 208 
RS data ALS, SI ALS, AI ALS ALS, AI 
Validation data CV 52 stands CV 68 stands 

ALS data     

Instrument 
Opetech 

ALTM 04 sen 
161 

Leica 
ALS50-II 

Optech 
ALTM3100 

Optech ALTM 
Gemini 

Acq. time Summer 2010 Spring 2009 Summer 2007 Summer 2010 
Pulse density  0.54 1.56 0.62 0.54 
Flying height  2000 1200 2400 2000 
Scan angle  30 40 30 30 

 

 

In study III, the field data consisted of 28 microstands measured in summer 2009. 

Microstands reached the first thinning phase but had not yet thinned and they were 

dominated by Scots pine or Norway spruce. T-square sampling, which is based on point-to-

point distance measurements, was carried out in each microstand, offering efficient and 

statistically coherent measurements to define spatial patterns of vegetation (see e.g. Besag 

and Cleaves 1973). Classes of the spatial pattern of trees for the microstands were defined 

with spatial indices (Diggle 1983). The tN-index of Besag and Cleaves (1973) appeared to 

be the most suitable for the T-square measurements and also M-index (Bartlett 1937) were 
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used. The need for first thinning was defined on the basis of basal area measurements, 

dominant height and visual assessment of the tree characteristics following the Finnish 

forest management recommendations (Hyvän metsänhoidon suositukset 2006). 

Determination of the spatial pattern of trees resulted in 11 clustered and 17 random/regular 

microstands, and the need for first thinning was performed on 15 microstands.  

In study IV, the field data consisted of 208 seedling stand plots (height between 1.3 and 

9 m) with different height, density and dominant tree species. DGPS was used to determine 

the position of the centre of each plot. Stem density (number of trees) and median tree 

characteristics by tree species were measured from each plot with 9 m radius in summer 

2010, and the need for tending was evaluated in autumn 2010 or spring 2011. Final training 

data included 103 plots with need for tending, and 105 plots without need during the next 5 

years. Validation data was collected from the same area in autumn 2011 and included 45 

seedling stands with a need for tending and 23 without. The need for tending was evaluated 

visually, and stem density (number of trees) was assessed using subjectively located 50 m
2
 

circular plots inside stands. Despite following Finnish management recommendations, the 

evaluation of timing for need of tending was still very subjective and depended on the local 

conditions. It was evaluated by experienced local foresters.  

 

 

2.2 Remote sensing data 

 

Leaf-on ALS data was used in studies I, III and IV and leaf-off data in study II. Laser 

scanning systems used in all studies captures four range measurements for each pulse, but 

the measurements were reclassified to represent first and last pulse echoes in studies II, III 

and IV and first, last and intermediate echoes in study I. The first echo data contained the 

echo categories ‘first of many’ and ‘only’, while the last echo data contained ‘last of many’ 

and ‘only’ echoes. Main properties of ALS datasets are shown in Table 1. DTM was 

generated from the ALS data. First, the laser points were classified to ground points and 

other points (method explained by Axelsson 2000) and then a DTM raster was created from 

the ground points by taking the mean height of the points within each raster cell. The 

orthometric heights of laser hits (z value) were converted to above ground heights by 

subtracting the DTM at the corresponding location. Only in study IV were raw echo 

intensities normalised for range (Korpela et al. 2010). In studies I and III, the CHM was 

generated from first echo data by taking the maximum height at above-ground scale within 

a certain radius from the centre of a pixel. In study I, a digital surface model (DSM) was 

also generated by summing up the pixel values of DTM and CHM rasters. The pixel size of 

surface models (DTM, DSM, CHM) was one or two metres depending on the study.  

Aerial images (AI) were taken in June (study II) and July (study IV) 2010 using Vexcel 

UltraCamD digital aerial camera. In study II, flying altitude was 2512 m, sidelap 30% and 

endlap 50%. The same values for study IV were 2700 m, 30 and 80%. In study II, pan-

sharpared green, blue and near-infrared (NIR) bands and in study IV, original red, green, 

blue and NIR bands and pan-sharpared NIR band were used. Pan-sharpened images were 

orthorectified to a 15 cm (study II) and 25 cm (study IV) resolution. In study I, satellite data 

consisted of two Landsat 5 TM images acquired June and July 2010. Spatial resolution of 

images was 30 metres. The Landsat 5 TM imagery had seven bands: blue, green, red, NIR, 

shortwave infrared, thermal infrared and reflective infrared.  
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3 METHODS 
 

 

3.1 Inventory units, estimation methods and accuracy assessment 

 

In this work, ABA was utilised in all studies with the following modelling units: circular 

plot (studies I, II, IV), segment (study I) and microstand (study III). The segments were 

created by generating a 50-metre buffer around the plot centre and delineating a 

homogeneous segment within the buffer zone (see Fig. 3 in study I). It was assumed that 

the larger segment better represents the forest stand or land use area compared to a small 

circular plot. CHM was used in manual delineation of homogeneous segments around a 

plot. Microstand-level inventory was chosen for study III since the size of the microstands 

was most suitable for field measurements and it resulted in inventory units that were 

sufficiently homogeneous in their forest characteristics. Homogeneous microstands were 

formed using a method presented by Leppänen et al. (2008). In studies II and IV, separate 

validation data was also used. Prediction was done into 16 m x 16 m grid-cells and stand 

level results computed as mean value of grid-cells inside stand borders (see Fig. 3, in 

studies II and IV).   

 Multinomial logistic regression (MlogR, e.g. Greene 2002) was used to classify forest 

land attributes in study I and linear discriminant analysis (LDA, e.g. Venables and Ripley 

2002) to classify spatial pattern of trees and the need for first thinning in study III. In study 

IV, linear regression (LR) was used to model the stem density, and both logistic regression 

(LogR) and support vector machine (SVM, Schölkopf and Smola 2002) to classify need for 

the tending of seedling stand. In studies III and IV leave-one-out, and in study I, leave-one-

cluster out-cross-validation was used. The summary of studied classification attributes in 

studies I, III and IV is shown in table 2.  

 

 
Table 2. Summary of studied classification attributes in studies I, III and IV. N=number of 

classes.  
 

Classification N Classes 

Study I   
National LU/LC 2 forestry, agricultural, built 
FAO LU/LC 2 forest, non-forest 
Main type 2 mineral soil, peatland 
Site type 5 5 very rich, rich, medium, poor, very poor 
Site type 3 3 rich, medium, poor 
Peatland type 2 pine peatland, spruce peatland, open peatland 
Drainage status 2 drained, undrained 
Study III   
Spatial pattern of trees 2 clustered, regular/random 
Need for first thinning 2 need, no need 
Combined 4 clustered + need, clustered + no need, 

regular/random + need, regular/random + no need 
Study IV   
Need for tending 2 need, no need within 5 years 
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Table 3. Summary of estimation methods used within studies. LDA = linear discriminant 

analysis, LR = linear regression, LogR = logistic regression, SVM = support vector machine, 
MlogR = multinomial logistic regression, NN = nearest neighbour method, TSP = tree 
species proportions from stand register data, N pred. = number of predictor variables in 
models, kappa = kappa-value, OA = overall accuracy, RMSE = root mean square error.  
 

Study I II III IV 

Method MlogR LR, NN LDA LR, LogR, SVM 

Y-variables 

national LU/LC, 
FAO LU/LC, 
main type, site 
type, peatland 
type, drainage 
status 

species-specific 
basal area 

spatial pattern 
of trees, need 
for first thinning 

stem density, 
need for 
seedling stand 
tending 

X-variables 

point cloud, 
surface, texture 
and spectral 
metrics 

point cloud, 
spectral and 
texture metrics, 
TSP 

point cloud, 
texture and 
landscape 
metrics 

point cloud, 
texture and  
spectral metrics 

N pred. 3 3,10 3 3,3,7 

Accuracy 
assessment 

kappa, OA 
RMSE, bias, 
kappa, OA 

kappa, OA 
RMSE, R

2
, 

kappa, OA 

 

 

In study II, two prediction methods were applied: (1) LR, in which the predicted total basal 

area was divided into tree species based on TSP from stand register data, and (2) the NN 

(Moeur and Stage 1995), in which metrics from ALS data and AI and TSP from existing 

stand register data were used as predictor variables for species-specific basal areas. To 

compare different data sources, the NN prediction was carried out using the following data 

combination: ALS data and stand register data (point cloud metrics and TSP from stand 

register data), ALS data and AI (point cloud metrics and spectral and texture metrics) and 

all three combined.  

Many different predictor variables from different variable groups were tested in each 

study. Using most of the estimation models, the maximum number of predictor variables 

was fixed to avoid overfitting or because of data properties. Therefore, all studies 

considered variable reduction and selection of best metrics, which are more detailed and 

explained in each study. In studies I and III, the maximum number of predictors was three. 

In study II, three predictor variables were used in LR for total basal area and ten variables 

in NN models. In Study IV, three (LogR) and seven (SVM) predictors were selected into 

best models.  

The accuracies of classifications were evaluated based on kappa-value (kappa, Landis 

and Koch 1977) and OA (See equations 5 and 6 in study III). RMSE and bias (See 

equations 5 and 6 in study II) were used to evaluate the accuracy of species-specific basal 

areas in study II and RMSE and R
2
 the accuracy and fitness of stem density model in study 

IV. The summary of estimation methods, variables and accuracy assessment methods is 

shown in Table 3.  

 

 

3.2 Predictor variables 

 

In this work, different predictor variables from different data sources were tested. Selected 

metrics or a combination of metrics were expected to describe the target class or forest 

attribute. The correlation between forest attributes and metrics calculated from height 
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distribution of ALS points has been shown in several studies (e.g. Næsset et al. 2004; 

Maltamo et al. 2014). In this work, all metrics directly calculated from ALS point cloud 

data are called point cloud metrics. Point cloud metrics can be further divided, for example, 

into height, density and intensity metrics. In this work, they were calculated separately from 

first and last echo data. Height and density metrics are used to describe the height and 

density structure of the canopy or target, while intensity metrics describe the mean and 

variation of the magnitude. In studies I, II and IV, height, density and intensity metrics and 

in study III, mainly density metrics were utilised. Echo proportions (also intermediate 

echoes) and some structural metrics calculated using FUSION (McGaughey 2012) were 

also tested in study I. Calculation methods of point cloud metrics varied slightly between 

studies. 

One aim of this work was to test rarely used horizontal ALS-based metrics. Horizontal 

ALS-based metrics are calculated from ALS-based surfaces like DTM, DSM or CHM and 

mainly used in terrain, landscape, hydrological and vegetation density analysis (e.g. 

Heideman et al. 2012). ALS-based surface (study I), landscape (study III) and texture 

metrics (studies I and III) are considered as horizontal ALS-based metrics in this work. In 

study I, ALS-based surface metrics are assumed to describe forest land attributes better than 

straightforward ALS point cloud metrics. Used surface models were, for example, DTM, 

DSM, CHM and slope, curvature, wetness index, accumulation, hillshade and ruggedness 

calculated from DTM and DSM and classified CHM models calculated from CHM. Metrics 

were calculated based on the pixel values of each created surface inside the boundaries of 

circular plots and segments. In study III, horizontal landscape metrics were calculated from 

classified CHM and used to discriminate spatial pattern of trees and need for first thinning. 

CHM was classified in two classes: ground pixels and tree pixels. Metrics were calculated 

based on ground patches and tree patches within a microstand that comprised neighbouring 

ground and tree pixels. Landscape metrics usually describe the structure over a landscape 

and include measures such as area, fringe, shape, neighbourhood and homogeneity of 

landscape (McGarigal and Marks 1995). In study III, metrics were expected to describe the 

spatial pattern of trees and the stand density (need for thinning). 

Texture metrics are used to express the spatial distribution of tonal variations within an 

image or any rasterised surface model (e.g. Haralick et al. 1973). Texture metrics were 

calculated in this work from ALS-based classified CHM (studies I and III) and from AI 

using pan-sharpared green, blue, and NIR bands (study II) and pan-sharpared NIR band 

(study IV). Texture metrics were calculated from the grey-tone spatial-dependence matrix 

using methods presented by Haralick et al. (1973). Only one grey tone spatial dependence 

matrix was created for each inventory unit (plot, segment, grid-cell). Parameter values used 

in calculations varied between studies.  

Spectral metrics describe the spectral value and variation in a target area. In forestry, 

spectral and texture metrics are commonly used in forest type and tree species 

discrimination (e.g. Packalén and Maltamo 2007). Metrics are usually calculated directly 

from pixel values inside the boundaries of the target area. In this work, spectral metrics 

were tested for classification of forest land attributes, prediction of species-specific basal 

areas and detection of need for tending of seedling stands. Spectral metrics were calculated 

from AI in studies II and IV and from SI in study I. Except in study IV, spectral 

information was fetched from original (no pan-sharpared) bands to ALS points and metrics 

were calculated from pointwise mean values.  

In study II, the specific interest was to use TSP from existing stand register data in 

prediction of species-specific basal areas. TSP were calculated from species-specific basal 

areas or numbers of trees in existing stand register data. A summary of used metrics (X-

variables) in different studies is shown in Table 3.  
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4 RESULTS  
 

 

4.1 Prediction of forest land and stand attributes 

 

Forest land attributes. The classification of LU/LC class according to both national and 

FAO classification was highly accurate (study I). Similarly, classification of site type, 

peatland type and draining status succeeded moderately well (Table 4). The use of 

segments gave slightly better results in almost all classifications compared with the use of 

circular plots. In the classification of LU/LC, particularly horizontal ALS-based surface 

metrics calculated from DSM, played a major role as predictor variables. For example, 

shadow, slope and curvature conditions of the canopy in the forestry land or forest class had 

much more variation compared to the agricultural land and non-forest categories. As an 

example, values of the horizontal metric s_hills225_sdm (standard devation of the hillshade 

calculated from DSM) in classes forestry land, agricultural land and non-forest are shown 

in Figure 2a. 

In this work, mineral soils and peatlands as well as undrained and drained forest land 

were discriminated for the first time using ALS data. The classification accuracies of main 

forest type and drainage status were only low and moderate. Despite this, the horizontal 

ALS-based surface metrics, especially those calculated from DTM, were important 

predictors. Differences were found, for example, in slope, curvature, ruggedness and some 

hydrological surface conditions between mineral soils and peatlands and undrained and 

drained areas. As an example, values of the horizontal metric a_slope_dtm (the average 

slope calculated from DTM) in classes mineral soil and peat land are shown in Figure 2b. 

Spectral metrics calculated from SI played a more important role in the classification of 

site types than ALS-based metrics, especially metric b4b5 (NIR band divided by short wave 

infrared band). The richer the site type, the higher values produced. This indicates that a 

combination of band 4 and band 5 recognises the larger amount of deciduous trees and 

green vegetation on more fertile site types. From point cloud metrics, especially the 

proportion of intermediate echoes was often used, but also some height-related metrics 

appeared in models. Also, those metrics produced higher values, the richer the site type, 

except for the very rich site type.  

It was only in the classification of peatland types that the point cloud metrics, especially 

density metrics, were found to be most significant predictor variables. For example, spruce 

peatlands got a higher proportion of vegetation hits than pine peatlands and open peatlands. 

This can be expected because spruce peatlands are denser than pine peatlands and open 

peatlands, which have very low canopy cover. Some ALS-based surface metrics calculated 

from DSM and CHM were also selected in best models.  

Species-specific basal areas. In study II, the best accuracies for species-specific basal 

areas were obtained for Scot pine, Norway spruce and birches, which occurred abundantly 

in study areas and when all deciduous species were grouped together (see Figs. 4 and 5 in 

study II). RMSEs for deciduous species were quite high, which is typical for minor tree 

species. The use of TSP from stand register data improved the basal area prediction of 

different deciduous tree species (the case of seven different tree species) compared to use of 

ALS data and AI only (see Figs. 5 and 6 in study II). In the case of three tree species, 

differences were minor between used data sources. The use of metrics from all data sources 

(NN : all) could not substantially improve the accuracies of the predictions compared to 

methods, which utilised only ALS and stand register data. Two methods (LR and NN) were 

tested to utilise TSP from stand register data. Based on the results, both methods were able 

to predict species-specific stand attributes if the quality of the existing stand register data is 
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adequate. The NN method was slightly better than the LR method in predicting basal areas 

for minor tree species.  

Spatial pattern of trees. Classification of the spatial pattern of trees was highly accurate 

in study III (Table 4). Horizontal landscape metrics calculated from classified CHM were 

the best predictor variables in the identification of spatial pattern of trees, whereas point 

cloud and texture metrics were not as good predictors. The structure of the landscape like 

the area, size and number of tree and ground patches clearly correlated with the spatial 

pattern of trees. Clustered microstands consisted of large and continuous ground patches 

and smaller tree patches (group of trees) surrounded by ground patches. This is the opposite 

of random/regular microstands, which comprised large continuous tree patches and small 

ground patches. As an example, values of the horizontal metric GPdensity (the number of 

ground patches per hectare calculated from classified CHM) in classes clustered and 

random/regular are shown in Figure 2c. 

 

 

4.2 Prediction of need for first thinning and tending of seedling stand 

 

Classification of the need for first thinning was highly accurate in study III (Table 4) and 

both the horizontal landscape metrics and point cloud metrics were found to be significant 

predictors in identification of the need for first thinning. The pattern of both the landscape 

and point cloud metrics suggested that microstands that needed thinning were dense and 

had more uniform canopies compared to microstands with no need for thinning. The need 

for first thinning was determined correctly for almost all microstands, even if the spatial 

pattern of trees was determined incorrectly. As an example, values of the horizontal metric 

GPstd (the standard deviation of the size of the ground patches calculated from classified 

CHM) in classes no need for first thinning and need for first thinning are shown in Figure 

2d. 

In study IV, stem density (number of trees per hectare) was predicted with RMSE of 

2204 stems/ha (49.7%) in validation data. The large RMSE can be partly explained by the 

very high stand densities in the area, which are caused by multi-stemmed deciduous trees 

and birches reproduced from the sucker shoots. The higher accuracies for tending need was 

obtained using plot data (kappa-values of 0.55 (LogR) and 0.71 (SVM)) compared with 

validation data (Table 4), even though results in ABA studies are usually more accurate at 

stand level. Plots and stands with the need for immediate tending and high density were 

easiest to classify correctly. In the LogR model one height, one density and one texture 

metric, and in the SVM model four height, two density and one intensity metric were used 

as predictor variables. High height values had negative and high density values had a 

positive correlation with tending need. Differences in classification accuracies between 

classification methods in validation data were minor.  

Study IV also evaluated how large the error rates would be if 25 or 50% of stands with 

the most reliable predictions were left without field check. LogR was very good at correctly 

recognising the stand were prediction was reliable (100% correct in the case of 25% left 

out, and 91% correct in the case of 50% left out), but in the case of SVM, accuracies were 

clearly lower. However, the reliability of the SVM predictions is more difficult to assess, as 

a binary classifier does not have a clear probabilistic interpretation. Based on reliability 

analysis in whole validation data, 30% of the stands could have been left without a field 

check so that no errors would have been made (see Fig. 4 in study IV).  
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Table 4. Summary of classification accuracies of best models in studies I, III and IV. N = 

number of classes. Kappa = kappa-value, OA = Overall accuracy, * = cross-validated data, 
** = validation data. 
 

Classification N Kappa OA % Best metrics 

Study I*     
National LU/LC 2 0.90 97 surface (+ point cloud) 
FAO LU/LC 2 0.91 97 surface (+ point cloud) 
Main type 2 0.37 90 surface (+ point cloud) 
Site type 5 5 0.42 63 spectral (+ point cloud) 
Site type 3 3 0.51 69 spectral (+ point cloud) 
Peatland type 2 0.69 84 point cloud 
Drainage status 2 0.52 88 surface (+ point cloud) 
Study III*     
Spatial pattern of trees, 2 0.77 89 landscape 
Need for first thinning,  2 0.93 96 landscape + point cloud 
Combined 4 0.76 82 landscape 
Study IV **     
Need for tending, LogR 2 0.38 71 point cloud + texture 
Need for tending, SVM 2 0.37 72 point cloud 
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Figure 2. Values of the horizontal metrics s_hills225_dsm in classes forestry land, 

acricultural land and built (a), a_slope_dtm in classes mineral soil and peatland (b), GPdensity 

in classes clustered and random/regular (c) and GPstd in classes no need for first thinning 
and need for first thinning (d).  
 

 

5 DISCUSSION AND CONCLUSIONS 

 
 

5.1 Novel metrics and use of multiple data sources 

 

The aim of this work was to develop ALS-based forest inventory for practical forest 

management by applying novel horizontal metrics and multiple data sources. In particular, 

this work examined the classification of forest land attributes (study I), prediction of 

species-specific stand attributes (study II), detection of spatial pattern of trees (study III), 

the need for first thinning (study III) and tending of seedling stand (study IV). 
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The point cloud metrics are nowadays the most commonly used predictor variables in 

ALS-based forest inventories. This work showed that horizontal ALS metrics calculated 

from ALS-based surface models could also be useful in forest inventory. Metrics were 

calculated from different ALS-based surfaces, such as DTM, DSM, CHM and different 

slope, curvature, wetness index, accumulation, hillshade, ruggedness and classified CHM 

models. In this work, horizontal ALS-based metrics were found to be good predictor 

variables, and even better than point cloud metrics, in the classification of LU/LC, main 

type and drainage status (surface metrics), and in detection of the spatial pattern of trees 

and need for first thinning (landscape metrics). This was the first time that horizontal ALS-

based metrics were tested in the classification of forest land use attributes, detection of the 

spatial pattern of trees and need for silvicultural operations. 

In RS of forest horizontal surface metrics are commonly calculated from AI or SI. In 

forest management inventories horizontal ALS-based metrics are rarely used as predictor 

variables, but ALS-based surface models have been useful in some applications. Earlier 

ALS-based DSM or CHM have been found useful in ITD (Hyyppä and Inkinen 1999), 

stand delineation (Koch et al. 2009) and evaluation of canopy cover and leaf area index 

(Korhonen et al. 2011); also, for example, in the classification of forest types and 

estimation of forest attributes (volume, biomass, Van Aardt et al. 2008) and in change 

detection (Vastaranta et al. 2012). Racine et al. (2014) studied the use of ALS-based 

metrics calculated from DTM (e.g. elevation, slope, aspect, catchment area, solar radiation 

and wetness index) in prediction of stand age, but they had only low or moderate 

importance in prediction models. Korpela et al. (2009) also used some metrics calculated 

from DTM in the classification of peatland (mire) types, but they found that point cloud 

metrics were more significant predictors. In some studies, forest land and different forest 

types have also been discriminated by utilising ALS-based surfaces, such as DTM, DSM, 

CHM and intensity rasters in classification (e.g. Antonarakis et al. 2008; Brennan and 

Webster 2006; Charaniya et al. 2004). 

Based on this work, the possibilities of horizontal ALS-based metrics should be applied 

more in ALS-based forest research and practical inventories. Their potential should be 

tested for solving problems and weaknesses of ALS-based forest inventory, such as 

inventory of seedling stands, prediction of tree species, site types and forest structure. The 

potential of horizontal ALS metrics should also be tested outside of the scope of forest 

inventory, e.g. in habitat modelling, detection of biodiversity hot-spots and predicting non-

wood forest products. In the future, the use of horizontal metrics calculated from high 

density ALS data and photogrammetric point cloud data also needs more careful 

examination.  

This work also supported the earlier findings; the combined use of multiple data sources 

can offer great possibilities for more accurate and cost-effective forest inventory and 

management planning. So far, in practical ALS based forest inventory in Finland, the ALS 

data is used together with AI and field data to predict species-specific stand attributes 

(Maltamo and Packalen 2014). Study IV showed that the combination of ALS data and AI 

is also useful in ALS-based inventory of seedling stands. Height and density metrics of 

ALS data formed the base for tending need classification, but also texture metrics of AI 

were selected into the most accurate logistic model to provide additional information on 

characteristics of seedling stands. Spectral metrics from AI may also be useful in describing 

species proportions in seedling stands, although they were not significant predictors in 

study IV. Earlier, Korpela et al. (2008) classified seedling stand vegetation using a 

combination of ALS data and AI. Both ALS and AI metrics were selected into best models, 

but their conclusion was that their 27 vegetation classes could not be reliable classified 

using tested AI and ALS metrics (kappa-value 0.28). 
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Study I showed that forest land attributes can be classified using a combination of ALS 

data, SI and plots from NFI as training data. ALS-based metrics were used in most of the 

classification models, but SI-based metrics were most important in classification of site 

type. Metrics calculated from ALS data and SI were also used together in some of the 

models. Earlier, Hudak et al. (2006), Latifi et al. (2010) and Tonolli et al. (2011), for 

example, have predicted growing stock attributes using a combination of ALS-based and 

SI-based predictor variables. In study of Tonolli et al. (2011) combined use of ALS and AI 

clearly improved prediction of total timber volume and when data was stratified based on 

tree species, but in studies of Hudak et al. (2006) and Latifi et al. (2010) ALS-based metrics 

had superior role in prediction. The use of ALS data together with SI can offer great 

possibilities for prediction of forest land and other attributes also in practical ALS-based 

forest inventory. The possibilities of new optical satellite sensors (e.g. ESA 2015) might 

also increase the combined use of SI and ALS data for forest inventory.  Using field plots 

from the NFI could increase the cost-effectiveness of ALS-based inventory, since separate 

field data does not need to be collected. In addition, the accuracy of the inventory will 

improve when the classification of forest land attributes are done by an experienced NFI 

field expert, not, for example, a seasonal worker. Earlier, Maltamo et al. (2009) and 

Tuominen et al. (2014) tested the use of NFI plot data in the prediction of growing stock 

attributes in practical ALS-based forest management inventories. The results of Maltamo et 

al. (2009) indicated that the accuracy of the estimates of stand attributes derived by using 

NFI training data was close to that of the fixed area plot training data. Tuominen et al. 

(2014) showed that adding NFI plots in the reference data generally improved the accuracy 

of the volume estimates by tree species but not the estimates of total volume or stand mean 

height and diameter. They discussed also that the difference between the plot types in the 

NFI and practical ALS-based management inventories causes difficulties in combination of 

the two datasets. 

Study II showed that use of tree species information from existing stand register data 

could be useful auxiliary information when predicting species-specific stand attributes in 

ALS-based forest inventory. The utilisation of stand register data enables taking more than 

three tree species into account, and could also reduce data acquisition costs. Earlier 

Maltamo et al. (2006) tested combined use of ALS data, AI and class variables (main tree 

species, stand development class and site fertility class) from existing stand register data to 

predict plot volumes. That improved the RMSE of plot volume by 15 % compared to use of 

ALS data only. Närhi et al. (2008), in turn, used ALS point cloud metrics and stand age 

from existing stand register data to predict stem density in seedling stands with RMSE of 

39 %. Breidenbach et al. (2010A) and Vastaranta et al. (2011) also tested existing 

developing class and site type and site type and tree species information for predicting 

species-specific stand attributes and thinning need, but those variables were not significant 

enough to be selected into final models.  

Existing stand register data can offer many kinds of detailed information, such as TSP, 

stand age, site type or silvicultural operation history for ALS-based forest inventory, 

although the use of this data is not always trouble-free. Firstly, the conduction of different 

silvicultural operations, such as thinnings, and natural mortality dynamics usually mean that 

the inventory data is not up-to-date, even if the information has been updated using growth 

models. Hence, the accuracy of predictions depends on how much the forest structure has 

changed after field inventory. For example, after clear cut or certain thinnings, existing tree 

species information for stands is not valid anymore. This means that different kinds of 

treatments should be updated to the register. Secondly, the quality of existing stand register 

data is not always very good. For example, the data acquisition could have been non-

comprehensive, e.g. by ignoring some minor tree species. This was also the case in study II, 
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where information on some minor tree species was missing. Thirdly, in practical 

applications, there are usually some stands or large forest areas for which existing stand 

register data are missing. However, carefully collected and updated stand register data can 

offer accurate and detailed information for ALS-based forest inventories.  

Nowadays several data sources such as ALS data, AI, SI, different kind of field data and 

existing stand register data are available for forest management. Data from different sources 

is suitable for different information needs and phases of inventory, for example ALS data 

for predicting growing stock and forest land attributes, AI and SI for tree species and site 

type separation and management history and age from existing stand register data for 

supporting prediction of silvicultural needs. In the future also different kind of GPS-located 

field data, such as tree lists from harvester data, might be possible to utilize in forest 

inventories. More research is still needed in this field, since the ability to combine data 

from different data sources (related to BigData) plays an important role in cost-effective 

forest inventory and management planning. 

 

 

5.2 Evaluation of prediction of forest land and stand attributes 

 

Forest land attributes. Study I showed that forest land attributes can be classified using 

combination of ALS data, SI and accurately measured field data, such as NFI plots. The use 

of segments gave slightly better results in almost all classifications than the use of circular 

plots. The reason for this may be that larger segments represent the characteristics of forest 

land and site type of the stand better than smaller plots. Promising results were obtained by 

using ALS-based surface metrics in the classification of LU/LC, main type and drainage 

status. Spectral metrics were found to be the most important variables in classification of 

site types and point cloud metrics in the classification of peatland types. 

The high classification accuracies of forestry land and forest (LU/LC) in study I are in 

line with earlier land use classification studies where ALS-based surfaces have been used 

(Charaniya et al. 2004; Brennan and Webster 2006; Antonarakis et al. 2008). However, 

earlier studies are not straightforwardly comparable with this study due to quite different 

class definitions and used surfaces. In this study, classification accuracies of main type and 

drainage status were only low and moderate. One reason for the misclassification of 

peatlands may be that large proportions of the peatlands in the study area have changed 

very close to mineral soil because of successful draining and long time since drainage. 

Some characteristics of drained areas might not be detected either, because of overgrown 

ditches or a sparse ditch network. Differences among peatlands and among drained areas 

might also affect the difficulty of separating mineral soils and peatlands and undrained and 

drained areas. Earlier, only in the study of Dirksen (2013), point cloud metrics were used to 

separate peatland (swamp) forests and upland forests (non-paludified, mineral soil forest) 

with accuracy of 54-62%, but results are not totally comparable into study I. In study of 

Maxa and Bolstad (2009) use of lidar data improved the wetland/upland distinction based 

on relative terrain height and derived terrain-shape indices, which also supports findings in 

study I of the use of ALS-based surface metrics in separation of mineral soil and peatland.  

The significance of spectral metrics calculated from SI and AI for the classification of 

forest types has been shown in many studies. Tomppo (1992) classified pixels into four site 

type classes using Landsat TM with OA between 50 and 70%, which are in line with 

accuracies of study I. So far only Vehmas et al. (2011) and Holopainen et al. (2010) have 

utilised ALS point cloud metrics in the classification of site types. Even though the field 

data of Vehmas et al. (2011) consisted of 247 mature forest stands on mineral soils, their 

classification accuracies were similar to the results of study I. Holopainen et al. (2010) used 
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dominant height predicted from ALS data and stand age from stand register to determine 

the site index, and then converted site indexes into site types. Their results were also similar 

with study I. Compared to earlier studies combination of AI and ALS metrics were used in 

prediction of site types in study I. 

Korpela et al. (2009) tested ALS-based features in the classification of mire habitats. 

Their classification accuracies of the main peatland (mire) types and dominant tree species 

are in line with our accuracies for peatlands. However, these studies are not fully 

comparable, because our classification consisted of pine-dominated, spruce-dominated and 

open peatland classes. They also found point cloud metrics to be the most significant 

predictor variables in classification models, and also intensity metrics in the separation of 

tree species. 

In practical inventory applications, when predicting the forest land categories and site 

types, similar CHM based segments, such as the ones used in study III, can be delineated 

using automatic segmentation. However, because results of this work were only slightly 

better using segments in most of the classifications, the grid-based approach could also be 

applicable (see Fig. 4 in study I). Hence, in this study the plot level modelling unit was 

large enough to describe forest land characteristics in most cases. In addition to practical 

forest management inventory developed methods in study I could also be used in the 

national and international level to monitor the amount, properties and state of forests. 

The classification of forest land attributes based on combination of different data 

sources still needs a more detailed examination in the future. Since the prediction of forest 

land and site types using RS is still challenging, the combined use of RS based predictions 

and information from existing land and stand register data could possibly be used in 

practical inventories. In addition, more detailed studies related to separating mineral soils 

and peatlands, detecting characteristics of peatland (mire) ecosystems and different site 

types using RS are needed.  

Species-specific stand attributes. Study II showed that species-specific prediction of 

several tree species was more accurate when ALS data together with TSP from stand 

register data were used in prediction. This was expected because the separation of different 

deciduous species based on AI and ALS metrics is extremely difficult. The best accuracies 

for species-specific basal areas were obtained for dominant tree species. RMSEs for 

deciduous species were quite high, which is typical for minor tree species. In some specific 

study cases, such as dealing with biodiversity or urban forests, more important than 

accurate stand attribute estimates is the information about the existence of minor tree 

species. For example, in the forest of Turku city, the existence of hardwoods, such as oaks, 

is of primary interest for forest planning. Both the NN and LR methods were able to predict 

species-specific stand attributes, but the NN method was slightly better in predicting basal 

areas for minor tree species than LR. The NN method, which uses the species information 

of the chosen nearest neighbours, could be a better option if stand register data is less up-to-

date or assessed less comprehensively, or if some minor tree species are ignored. Hence NN 

method is very well suited for mapping potential stands for certain tree species. Using NN 

stand attributes could also be predicted simultaneously for several depended variables, e.g. 

for several stand attributes and for several tree species. In turn using LR, which uses species 

information of each own stand, accurate species-specific attributes can be predicted, if 

stand register data is updated and comprehensively collected.  

Packalén and Maltamo (2006, 2007, 2008) developed an ABA for species-specific stand 

attributes using the NN method, ALS data and AI. Similar prediction accuracies were 

obtained in study II for pine and spruce, but accuracies for deciduous trees were higher 

compared to their studies. One reason for this can be that the proportion of deciduous trees 

in their data was low. Our results are also in line with Breidenbach et al. (2010A, 2010B), 
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who predicted plot volumes for several deciduous species using ALS data. Most of the 

ALS-based urban forest studies have focused on single tree level and on pure urban trees 

and gardens (e.g. Zhang and Qui 2011; Shrestha and Wynne 2012) or focused on tree 

species discrimination (e.g. Voss and Sugumaran 2008), and therefore cannot be compared 

to study II. 

Study II showed that in forest areas with many different tree species, tree species-

specific information can be predicted in more detail and with greater accuracy by using 

ALS and the existing stand register data, than by using ALS data and AI. It might be 

possible to use this approach in other areas, too. However, it would require the existence of 

reliable and up-to-date stand register data. Also, in managed boreal forests, the use of TSP 

from existing stand register data might be an alternative for AI, because the acquisition of 

AI is expensive and sometimes impossible (e.g. because of weather conditions) and 

especially if more detailed information on minor tree species is desired.  

In principle, TSP from the stand register data can be utilised for the prediction of 

species-specific sum attributes (e.g. basal area, volume and number of stems), but they are 

not suitable for predicting the mean attributes of stands (e.g. mean height and diameter). 

Species-specific mean attributes of stand register data might be used in the prediction of 

current mean attributes. Another possibility is to calibrate the stand register based species-

specific mean attributes by utilising the ratio of the predicted total mean estimate and stand 

register based total mean estimate. 

An accurate and cost-efficient prediction of species-specific stand attributes is still an 

unresolved issue in RS based forest inventory. Hence, more research with new and 

innovative ideas to solve this problem is needed. Also, the combined use of RS and stand 

register data needs more careful examination, since the ability to combine data from 

different data sources and to update existing data plays an important role in cost-effective 

forest inventory and management planning.  

Spatial pattern of trees. Study III demonstrated the successful identification of spatial 

pattern of trees using ABA. Classification accuracy of spatial pattern of trees was high and 

the horizontal ALS-based metrics were found to be significant predictor variables. The 

largest errors were detected in the classification of clustered microstands. The reason for 

that might be the high stand densities, in which case the tree groups and gaps could not be 

identified using ALS. However, incorrect classification of clustered microstands into 

regular/random ones is more consequential from a forest management point of view than 

vice versa. In study III, microstands consisted of rather young and equally sized trees 

(based on height) of the same tree layer, which may have had an effect on the results, in 

addition to a small number of observations.  

Packalen et al. (2013) used ITD, semi-ITD and ABA, but their classification accuracies 

were comparatively low. In their study, similar landscape metrics as in study III were 

tested, but their field data was more heterogeneous compared to study III. The study by 

Mustonen (2002) applying ALS-based ITD provided correct spatial pattern for the majority 

of plots, excluding clustered plots. Both ALS-based studies of Mustonen (2002) and 

Packalen et al. (2013) reported the difficulty in detecting clustered spatial pattern of trees, 

which was also identified in study III. However, due to differences in the study material and 

methods applied, the results of these previous studies cannot be directly compared with 

study III. The approach presented should still be pursued in more detail in order to 

generalise results with a larger sample size, in more heterogeneous forests, and to identify 

all three spatial pattern of trees.  

The detection of spatial pattern of trees using RS is a relatively unexplored area. This, 

together with the laboriousness of field measurements, is the reason why the detection of 

spatial pattern of trees will not be reasonable in practical ALS-based inventory in the near 
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future. Based on results in study III, the need for first thinning was determined correctly for 

almost all microstands, even if the spatial pattern of trees was determined incorrectly. This 

indicates that there is no urgent need to determinate the spatial pattern trees if the need for 

thinning can be defined correctly without it. This, of course, changes if spatial information 

is also needed for other purposes such as for predicting growth or habitat modelling. 

 

 

5.3 Evaluation of prediction of need of first thinning and tending of seedling stand 

  

In study III, classification accuracy of the need for first thinning was highly accurate as the 

need for first thinning was determined correctly for almost all microstands. Both the 

landscape metrics and point cloud metrics were found to be significant predictors in the 

identification of the need for first thinning. In the case of tending of seedling stands (study 

IV), the classification accuracy was only moderate. However, based on this approach the 

amount of fieldwork required for seedling stands can be reduced. Height and density 

metrics were the most important in detecting the need for tending of seedling stands, but 

also texture metrics from AI was selected into best model. Surprisingly, the spectral metrics 

were not found to be important in detecting tending need, even though high NIR reflectance 

should indicate the dominance of deciduous species. The reason for this could be that most 

of the study area had fertile soils with plentiful herbaceous vegetation that is spectrally 

similar to deciduous foliage. However, it was difficult to find clear reasons for 

misclassifications, as there were errors in all kinds of plots and stands; but plots and stands 

with immediate tending need and high density were easiest to classify correctly. 

The detection of silvicultural needs with RS is problematic since in practical forestry, 

such need is usually based on subjective field assessment of several attributes. When the 

need for silvicultural operations has been determined in ALS-based inventories, it has 

usually been done by means of estimated attributes of growing stock. Based on studies III 

and IV, it was done directly with ALS metrics. Direct classification is a more accurate 

alternative than the estimation of variables such as stem density (number of trees per 

hectare), spatial pattern of trees, species proportion and height differences, which all are 

evaluated when management decisions are made in the field. 

High classification accuracies of the need for first thinning in study III are in line with 

the results of Halvarsson (2008) for thinning need and Nivala (2011) for fuel wood thinning 

need. Vastaranta et al. (2011) obtained slightly lower accuracies for thinning maturity. All 

three studies obtained good results using direct prediction and point cloud metrics as 

predictor variables, which support results in study III. In seedling stands, previous results 

for detecting the need for seedling stand tending (Närhi et al. 2008; Tahavanainen 2011) or 

predicting stand density (Næsset and Bjerknes 2001; Närhi et al. 2008) has not been very 

accurate. Those results are similar to study IV. In study IV field data was more 

comprehensive (including validation data) and also AI were utilized together with ALS data 

compared to earlier studies. Earlier Vastaranta et al. (2011) tested also tree species and site 

type as preliminary variables but they were not included in the final models. Närhi et al. 

(2008), in turn, utilised existing information of stand age in prediction of stem density in 

seedling stands. In study IV stand register data was not comprehensive and reliable enough 

to be able to utilise in prediction, which is a common problem in practical inventories. 

Study III and IV showed that in addition to traditional point cloud metrics, horizontal 

landscape metrics and AI metrics could also be used to determine the need for silvicultural 

operations.  

There are several important issues that need to be considered in practical RS based 

seedling stand inventories based on the findings in study IV. Firstly, the training data 
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should represent all kinds of seedling stands occurring in the area, which may be difficult to 

achieve due to limited recourses. Randomly selected plot locations may not cover the entire 

scale of ALS and AI features describing different seedling stands in the area. Thus, 

stratification is needed. Existing stand register data can help in stratification, but if it is out-

of-date, it might take plenty of time to map different stand types of interest in the field. 

Solving this issue would require RS data to be already available in the plot selection phase, 

which is difficult as the fieldwork and RS data acquisition should be ideally performed at 

the same time. Secondly, the quality of field-based tending need estimates must be 

confirmed, since field measurements are often performed by short-term field workers. To 

be able to obtain reliable tending need estimates, field workers must be well-trained. 

Thirdly, it was found that the advantage of the logistic model is the probabilistic 

interpretation of the prediction, which assisted the detection of stands where the certainty of 

the predictions was high. Furthermore, results indicated that the selection of predictor 

features has a much larger influence than the selection of the classification method. Height 

and density metrics of ALS data forms the base for tending need classification, and texture 

metrics can provide additional information. In some cases, the spectral metrics may also be 

useful to describe species proportions, but they were not significant predictors in study IV. 

Fourth, the importance of obtaining a representative and consistently estimated base data 

that does not contain errors was also observed. Fifth, when the models are applied to predict 

the tending need for stands, the selection of the grid-cells that are used in the predictions is 

crucial. That is because existing stand borders may contain errors (e.g. mixed cells) and the 

presence of retention trees distorts the ALS height distribution for some of the cells. Results 

improved significantly when a height limit of 10 m was applied for prediction; i.e. cells 

including higher ALS height observations were excluded. 

Although the analysis of seedling stands from RS data is a difficult task and some 

fieldwork is still needed, ALS-based predicted probabilities for tending need can be used to 

detect the stands for which prediction is reliable. These predictions should be combined 

with existing stand register data (such as site fertility, age and species) and local expert 

knowledge. If the predicted probability for tending need is high (need for tending) or low 

(no need) enough for a particular stand, and other available information supports it, then the 

cost of checking tending need in the field may be higher than the cost of possible errors. In 

the case of the need for thinning, its prediction seems to be more successful, but to get very 

accurate results stratification might be needed, because stand characteristics differ between 

development classes, tree species and site types. One reason for high classification 

accuracies in study I might be that microstands consisted of rather young and equally sized 

trees of the same tree layer. Many of the findings in study IV for inventory of seedling 

stands are also relevant for young and advanced thinning stands. However, more research is 

needed to improve the determination of need for silvicultural operations using a 

combination of RS and other data sources. In addition to improving the detection of the 

need for tending of seedling stands, other interesting topics are, for example, determining 

the need for complementary drainage, clearing of felling and thinning stands, pruning or 

fertilisation. 
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5.4 Conclusions 

 

In this work, ALS-based forest inventory was further developed for practical forest 

management by applying novel horizontal metrics and multiple data sources. The results 

showed that it is possible to identify forest land attributes, spatial pattern of trees and the 

need for silvicultural operations using ALS-based forest inventory. Furthermore, the use of 

tree species information from existing stand register data proved to be useful auxiliary 

information when predicting species-specific stand attributes. Some of the successful 

results were obtained because of the use of novel horizontal ALS-based metrics and 

combined use of multiple data sources.  

The inventory methods developed in this work for determining the need for silvicultural 

operations such as tending of seedling stands (and first thinning) are already in use in stand 

level forest inventories in Finland, and the experiences regarding their suitability in practice 

are collected. Similarly, the methods for combining ALS data and existing stand register 

data were developed simultaneously with the practical forest inventory of Turku city. Also, 

the identification of site types and forest land categories can be incorporated into the ALS-

based forest inventory system, as presented in this thesis. The use of existing stand register 

data could also increase the cost-effectiveness of practical ALS-based forest inventory. To 

conclude, the combination of information from different data sources and emergence of 

novel metrics and statistical methods plays an important role in the development of cost-

effective forest inventory and management planning. 
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