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Wetland and deadwood loss have had a profound effect on boreal aquatic and terrestrial 
ecosystems and their biodiversity. Deadwood-dependent species are one of the most 
endangered organism groups in the world, while amphibians on the other hand excellently 
represent the ecological state of wetlands. The boreal region contains a large proportion of 
the world’s wetlands, which have undergone two major alterations during the last 500 years: 
first the extirpation of beavers and secondly draining during the 20th century. 
 
Beavers are well-known ecosystem engineers of the Northern Hemisphere. They modify their 
surroundings by damming water systems. Damming raises flood waters into the surrounding 
riparian forest and changes environmental conditions both on land and in water. Ecosystem 
processes are altered when beavers turn a lotic water system into a lentic one, but the 
alteration is also evident when beavers modify initially lentic water systems. Organic matter 
and nutrients are transferred into a wetland from beaver-felled trees and vegetation killed by 
flooding. The amount of dissolved organic carbon increases during the first three 
impoundment years, which enhances the growth of aquatic vegetation and the abundance of 
phyto- and zooplankton, thereby also increasing invertebrate abundances. Luxuriant 
vegetation and ample plankton and invertebrate populations facilitate frogs, which become 
abundant in beaver wetlands. The moor frog in particular favours beaver-created wetlands. 
 
Flooding and beavers kill trees, producing high amounts of deadwood. The riparian forests 
of beaver wetlands include much higher deadwood levels than wetlands without beavers. 
Increased deadwood creates substrate resources for deadwood-dependent species. Snags are 
a typical deadwood type in beaver wetlands. Calicioids are deadwood-dependent species 
particularly specialised in inhabiting standing deadwood. 
 
The comeback of beavers has aided the restoration of wetlands and deadwood. Beaver 
wetlands can be seen as carbon and biodiversity hot spots that increase the heterogeneity and 
hydraulic connectivity of the boreal landscape. 
 
Keywords: anurans, biodiversity, calicioids, deadwood, dissolved organic carbon, riparian 
forest 
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INTRODUCTION 
 
 
Biological diversity decreases with declining genetic diversity, species extirpation and 
habitat loss. As a result of anthropogenic pressure, the number of endangered species is 
increasing worldwide. However, biodiversity provides ecosystems with the means to be 
functional and also to produce ecosystem services. Because of ecosystem and species loss, 
developing new methods for securing biodiversity and ecosystem services on Earth is 
necessary. According to the European Union’s (EU) water framework directive, member 
states must maintain and improve the ecological conditions of inland waters and ensure the 
conservation of their inland waters, including wetlands.  
 
 
Wetlands — the Earth’s kidneys 
 
Wetlands are one of the world’s most important ecosystems. Unfortunately, the world has 
lost approximately half of its wetlands, and Europe alone has destroyed and changed two-
thirds of its wetlands. As the “Earth’s kidneys”, wetlands mitigate both floods and drought, 
purify waters and recharge groundwater stores. Furthermore, they offer habitat for thousands 
of species. 

Finland is located in the boreal region, which is the world’s largest forest ecosystem, 
extending throughout the Northern Hemisphere. A large proportion of the world’s wetlands 
are located in the boreal (Table 1), which also stores large amounts of carbon. Generally 
speaking, boreal ecosystems are under considerable stress. The climate is severe and often 
unpredictable, which produces additional challenges for wetland conservation. Furthermore, 
nearly 14 million hectares of wetlands have been drained for forestry in northern Europe 
(Paavilainen and Päivänen 1995; Suislepp et al. 2011). Finland alone has drained more than 
5.5 million hectares of wetlands and forests (Peltomaa 2007), most of them during the last 
50 years. Ditches drain excess surface water, which influences the quality and processes of 
aquatic ecosystems, resulting in reduced wetland diversity (Suislepp et al. 2011). 

Another reason behind the deterioration of boreal wetlands is the near extinction of 
beavers in in both Eurasia and North America during the 19th century. Before the extirpation, 
probably ca. 100 million beavers roamed the boreal region (in North America and Eurasia) 
(Naiman et al. 1988; Nolet and Rosell 1998). The boreal therefore abounded with beaver-
created wetlands in addition to other types of wetlands. The last European beaver (Castor 
fiber; Linnaeus 1758) of Finland was shot in 1868, but the main population was hunted down 
as early as the late 1500s (Lahti and Helminen 1974). Only eight small isolated populations 
remained in Europe, with approximately 1200 animals in total (Halley and Rosell 2002).  

During the last 500 years, boreal wetlands have thus undergone two major changes: firstly, 
the loss of beavers and secondly, draining. Both processes have had an extensive effect on 
boreal wetlands. After destroying wetlands, we are gradually beginning to recognise their 
value and working to restore them. Additionally, beaver populations have begun recovering 
from their near extinction. They have spread by both aided reintroductions and naturally, and 
currently inhabit most of their original range in both North America and Eurasia. European 
beavers were reintroduced to Finland in 1935, and North American beavers (Castor 
canadensis; Kuhl 1820) were introduced to Finland nearly concurrently (1937). At the time, 
science did not recognise the two as separate species (Parker et al. 2012). Nowadays both 
species inhabit different parts of Finland, and are spreading to new areas naturally. 
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Table 1. Current stage of the world’s wetlands. Modified from Junk et al. (2013). Africa’s 
figures are conservative estimates excluding Algeria, Egypt, Libya, Mauritania, Morocco, 
Tunisia and Western Sahara, and excluding wetlands along low-order rivers and coastal 
wetlands. Europe’s figures include the European side of Russia, so the Russian figures are 
partly presented twice. 
 

Region Land area Wetlands (tot.) (km2) Wetland (%) 

N. & C. America 24 900 000 2 490 000 10 

Europe 10 000 000 500 000 5 

Russia 17 075 400 >1 800 000 >10 

China 9 600 000 684 900 7 

South America 17 850 000 >3 000 000 >20 

Africa 30 065 000 2 129 000 7 

Sub-Saharan A. 23 004 000 2 073 000 9 

Tropical Asia 14 536 000 687 000 2.8 

Australia 7 692 000 230 000 3 

 
 
Beaver’s wetland engineering 
 
The use of ecosystem engineers in conservation biology has recently received attention 
(Byers et al. 2006; Bartel et al. 2010). Ecosystem engineers are organisms that physically 
modify the environment through their activities. These activities feature digging, burrowing 
or damming, and they affect the environment on both the spatial and temporal scales. 
Ecosystem engineering is a widespread phenomenon including organisms from invertebrates 
and angiosperms to vertebrates, such as mammals (Wright and Jones 2006). In a way, 
ecosystem engineering can be used to widen our ecological thinking. 

Ecological engineers can also substantially influence the input and export of materials 
(Gutiérrez and Jones 2006), modify chemical and microbial processes, alter direct biotic 
interactions (Jones et al. 1994; Gurney and Lawton 1996; France 1997), and enrich the 
biodiversity of systems (Bruno et al. 2003). Although all organisms affect their physical 
environments, the influences of ecosystem engineers are much more profound and protracted, 
as they operate on large spatial and/or temporal scales (Hastings et al. 2007). 

Beavers act as ecosystem engineers in the Northern Hemisphere (Jones et al. 1994; 
Wright et al. 2002). They create and maintain special habitats by creating dams (Baker and 
Hill 2003). Damming changes both the abiotic and biotic conditions of a wetland. Tree felling 
and raising water into riparian forests transfer nutrients and energy from terrestrial 
environments to water ecosystems such as boreal lakes (Collen and Gibson 2001; Nummi 
and Kuuluvainen 2013). The beavers’ modifications (damming, digging, felling trees) alter 
ecosystem structure and function. The degree of these large-scale effects depends on the 
patch dynamics that they create (Jones et al. 1994; Wright et al. 2004). Beavers alter the 
morphology and hydrology of drainage networks, thus creating a shifting patch mosaic of 
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recurring successional phases. These occur with their own individual temporal wet-dry 
continuums (Naiman et al. 1994; Hyvönen and Nummi 2008). As a result, beavers can 
strongly impact landscape features in the long term, particularly because their dams may 
endure much longer than the animals actually inhabit a site. At the landscape level, the degree 
of beaver-induced effects depends on the size of the beaver population and the patch 
dynamics created by the animals (Jones et al. 1994; Wright et al. 2004), in addition to the 
landscape characteristics and aquatic topography. 
 
 
Boreal carbon cycle 
 
The boreal region contains huge pools of terrestrial and aquatic carbon, which play an 
important role in the global carbon cycle (Couture et al. 2012; Olefeldt et al. 2013; Moen et 
al. 2014). A large fraction of boreal landscapes is covered in lakes, which are probably more 
significant to the carbon cycle in boreal areas than in any other region. Atmospheric carbon 
sinks into boreal forests and peatlands (Apps et al. 1993; Weber and Flannigan 1997; Lavoie 
et al. 2005). Boreal lakes, on the other hand, receive their carbon inputs from terrestrial 
ecosystems (Benoy et al. 2007; Prairie 2008; Olefeldt et al. 2013), and most of their carbon 
is in the form of dissolved organic carbon (DOC), which is then mineralised, transformed 
and sedimented (Tranvik et al. 2009; Kortelainen et al. 2013). As a result, carbon accumulates 
in lake sediments (Sobek et al. 2005; von Wachenfeldt et al. 2008; Einola et al. 2011). 

Beaver-flooded habitats alter the biogeochemical conditions of an ecosystem. Flooding 
enhances biogeochemical fluxes by transporting elements across space (McClain et al. 2003). 
To date, not a single beaver-related carbon study has been performed in Europe, and the 
studies conducted in North America have concentrated on aquatic ecosystems that change 
from lotic to lentic ones. These studies have shown beaver wetlands to act both as carbon 
sources and sinks (Fig. 1) (Naiman et al. 1986; Mitsch et al. 2013; Johnston 2014). 
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Figure 1. A typical wetland carbon cycle. Modified from Mitsch et al. (2013). Wetlands are 
usually seen more as carbon sinks than emitters. However, beaver-inhabited lakes and ponds 
act both as emitters and sinks. Abbreviations: CH4 = methane, CO2 = carbon dioxide, GPP = 
gross primary productivity, Rp = plant respiration, Rs = soil respiration, Fcs = carbon 
sequestration, Fme = methane emissions.  
 
 
Deadwood – a fading resource in boreal forests 
 
Humans have influenced boreal forests for centuries, but forestry practices have dramatically 
intensified forest utilisation during recent decades (Gamfeldt et al. 2013). Boreal forests have 
been conifer-dominated from approximately the end of the Pleistocene onwards, but forestry 
has reinforced this coniferous dominance. In addition, deadwood and deadwood-dependent 
species have become very rare (Linder and Östlund 1998; Stokland et al. 2012). Nowadays, 
Finnish and Swedish foresters at least are obligated to leave deadwood and retention patches 
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in forests, although some loopholes still exist in these practices. Stumps are usually the most 
common deadwood type left in forests after forestry practices are performed (Green and 
Peterken 1997). Stumps probably have the smallest volume of all deadwood types. 
Additionally, they can only uphold quite restricted communities of deadwood-dependent 
species. Furthermore, the retention patches left as refugia during forestry practices are too 
small to support saproxylic community viability (Perhans et al. 2009). 

Wildfires, wind, snow and pathogens are the main disturbances of boreal forests 
(Kuuluvainen 1994). However, stand-replacing disturbances nowadays occur very seldomly 
(Liu and Hytteborn 1991; Kuuluvainen 1994). Flooding is one of the main disturbances faced 
by riparian forests (Nummi and Kuuluvainen 2013). The moisture of riparian areas protects 
the trees from fires, and also from storms to some degree. Spring and autumn floods are 
common in Finland and in the boreal in general. Normally spring and autumn floods in 
Finland’s inland water systems reach, on average, a few metres from the shoreline into a 
riparian forest (SYKE 2016). Water inundation because of flooding by beavers, on the other 
hand, can reach several dozen metres into a riparian forest (Nummi and Hahtola 2008), and 
have twofold impacts on it. The flood causes substantial tree mortality, and beavers felling 
trees to build dams, lodges and food caches add to this mortality. (Jones et al. 1994; Nummi 
and Kuuluvainen 2013). Deadwood amount is a limiting factor for several ecological 
processes and species (Stokland et al. 2012), thus it is a biodiversity indicator of boreal forests 
(Hahn and Christensen 2005; Stokland et al. 2012).  
 
 
Patterns of biodiversity loss in boreal wetlands and forests 
 
Anthropogenic actions are the primary threats to biodiversity (Jenkins and Joppa 2009; 
Bradshaw and Brook 2014), both on land and water. Wetlands, including those in the boreal 
region (Rooney et al. 2012), have declined during the last century due to anthropogenic 
factors. Although merely understanding the ecological processes of the ecosystem is 
important, we need to identify the factors upholding these processes and the biodiversity 
linked to them (Montoya et al. 2012).   

Amphibians have experienced their share of anthropogenic impacts, and represent one 
important aspect of global biodiversity loss. Along with declining wetlands, approximately 
30% of amphibian species globally are threatened with extinction (Crump 2010). The chytrid 
fungus (Batrachochytrium dendrobatidis) and anthropogenic habitat destruction are the key 
causes of this loss (Petranka et al. 2004; Gibbons et al. 2006; Whiles et al. 2006; Sayim et al. 
2009). Amphibians are good indicators of habitat sustainability, especially for wetland 
habitats. Their life cycle commonly includes both aquatic and terrestrial phases. Anurans lay 
aquatic eggs, and the aquatic tadpoles metamorphose into terrestrial adults. Amphibians are 
additionally important to the energy flows and nutrient cycling of ecosystems; they function 
as both predators and prey (Crump 2010). Furthermore, the physical and chemical changes 
in the environment rapidly impact amphibians. The permeable skin and tadpoles’ gills render 
anurans vulnerable to several alterations in environmental conditions (e.g. oxygen 
concentration and environmental toxins). As amphibians play diverse roles in natural 
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On the other hand, deadwood-dependent species are declining and/or on the verge of 
extinction in boreal forests, even in regions where forest areas are increasing. They are one 
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of the most globally threatened organism groups (Stokland et al. 2012). The disappearance 
of deadwood is associated with the decrease of deadwood-dependent species. In boreal 
Fennoscandia the average volume of coarse woody debris has decreased by 90–98%. We 
have concurrently lost, by default, more than 50% of the original saproxylic species (Siitonen 
2001).  

Forest management and the low prevalence rate and strong control of natural forest 
disturbances have made the living conditions and dispersion of saproxylic species 
challenging (Kruys et al. 1999; Junninen et al. 2006; Brunet and Isacsson 2009). In addition 
to habitat fragmentation, the characteristics of the individual habitat fragments significantly 
explain the decline of species (Hanski and Ovaskainen 2002). Forest management mainly 
produces stumps and coniferous deadwood, which as a whole influence the available 
deadwood substrate for saproxylic species towards a very narrow selection. Many saproxylic 
species indicate stand naturalness and the long-term continuity of deadwood, and are 
therefore used in conservation planning (Niemelä 2005; Jansson et al. 2009). Pin lichens 
(Caliciales), a form of saproxylic organisms, are considered sensitive biomonitors of forest 
ecosystem health (Selva 2003), and can be used to indicate snag abundance as they most 
commonly inhabit snags (Tibell 1992; Holien 1998; Lõhmus and Lõhmus 2011).  

Beaver engineering influences riparian forests (Hyvönen and Nummi 2008; Nummi and 
Kuuluvainen 2013), and their activity increases both habitat and species diversity (Rosell et 
al. 2005). Beavers have been suggested to increase species richness at the landscape scale 
(Wright et al. 2002). They could, therefore, be used to ensure the conservation of several 
species.  
 
 
THESIS AIMS 
 
 
The main aim of this thesis was to identify the influence beavers have from a landscape 
perspective. Moreover, I studied the impacts of beavers’ actions on: 

1) water chemistry, especially carbon, 
2) habitat structure in the form of produced deadwood, and 
3) biodiversity. 

Regarding biodiversity I studied the diversity of anurans and Caliciales as deadwood-
dependent organisms.  

Throughout my thesis I have evaluated the effects of beavers in initially lentic water 
systems. Most previous studies have focused on beavers changing lotic systems into lentic 
ones, but see e.g. Hood and Bailey 2009, Hood and Larson 2015 and Anderson et al. 2015. 
My thesis surveys the fundamental alterations beavers induce on boreal lentic wetlands. 
Based on this knowledge we can develop suggestions on how beavers could be used in 
wetland restoration and conservation.  
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MATERIAL AND METHODS 
 
 
The work has been conducted in two forest landscapes in southern Finland: the Evo area 
(61°10’N, 25°05’E) and Nuuksio National Park (60°19’N, 24°28’E). Both areas belong to 
the southern boreal vegetation zone (Ahti et al. 1968). They consist of tens of small headwater 
lakes. A subset of these lakes was used in the different studies (I: 37 lakes each located in 
Evo; III: 20 lakes each located in Evo; II and IV: 18 lakes in total, 12 located in Evo and six 
located in Nuuksio). In addition, one study (III) also included six temporary ponds in Evo. 

The altitude of the Evo area varies from 125 m to 185 m a.s.l, and Nuuksio from 27 m to 
114 m a.s.l. The soils of both areas are low in nutrients, with glacial and sandy tills being the 
dominant soil types respectively. Both areas are predominantly coniferous with deciduous 
patches scattered in the landscape.  

The Evo area was one of the places where the first European beaver reintroductions were 
performed in 1935. The North American beaver was introduced to Evo in the 1950s (Parker 
et al. 2012), and currently the area’s beaver population consist solely of North American 
beavers. The beaver-inhabitated lakes at Evo are most commonly formed by the damming of 
an existing lake by beavers (Nummi and Hahtola 2008). Beavers usually occupy one site for 
an average of three years, and recolonise an abandoned patch after an average 10-year 
absence (Hyvönen and Nummi 2008). Neither species has colonised Nuuksio since their 
(re)introductions to Finland, which is why we considered the area a reference area to Evo. 

Evo’s lakes have been monitored for beavers every year since 1970 by surveying the 
lake/wetland perimeters. The beaver population distribution is, therefore, well documented. 
This information was used in all articles (I–IV). 

Water chemistry data (I) were collected during years 1978–2013. The samples were taken 
twice a year, during early spring and late autumn. Total phosphorus (TP), total nitrogen (TN), 
dissolved organic carbon (DOC), dissolved oxygen (DO) and pH were determined from the 
samples. In this study we were able to measure beavers’ effects on water chemistry variables. 
We compared the situations in beaver-inhabited lakes and lakes downstream of them before, 
during and after beaver occupation. 

Deadwood data (II) were collected during summer 2014. We calculated the type and 
amount of deadwood from two equal-sized sampling plots at each study site. The total area 
of each sampling plot was 0.04 ha. One sampling plot from each site was situated on the 
widest flood meadow section of the riparian zone and the other directly across from it on the 
opposite side of the lake. We recorded the species, diameter, length, decay stage and type 
(downed, standing, stump) of each deadwood sample. The total deadwood volume was 
calculated according to the formulas by Laasasenaho (1982). 

The anuran abundance and diversity study (III) was performed in May 2010. Data were 
collected using anuran calling surveys. Each anuran species has a unique call so identification 
of the species was straightforward. To evaluate abundance I used the anuran calling index 
(ACI). See more details in article II. In addition to the anuran calling surveys, I measured six 
environmental variables: the extent of shallow water (< 0.6 m), water temperature, pH, 
dissolved oxygen concentration (DO), riparian canopy cover and emergent vegetation 
coverage. 

Caliciales samples (IV) were gathered concurrently with the deadwood data (II). I 
randomly picked 10 dead trees from each sampling plot (i.e. 20 samples from each site) and 
took a sample of each distinguishably different Caliciales species. The species of each sample 
were identified by examining the anatomical details using dissecting and compound 



16 
 
microscopes, and by testing for species-specific colour reactions in KOH solution from 
squash mounts of ascomata in water (Tibell 1999; Tuovila 2013). 
 
 
RESULTS AND DISCUSSION 
 
 
Although critics have argued that all organisms modify their surroundings to some degree, it 
is essential to determine those organisms that alter important ecosystem processes and 
biodiversity. In addition, Crain and Bertness (2006) perceived important ecosystem engineers 
as providers of limited resources, which will obviously lead to a greater impact on ecological 
communities benefitting from the resource enhancement. 
 
 
Beaver engineering alters the carbon cycle 
 
Beavers alter both terrestrial and aquatic environments, especially when a lotic system is 
transformed into a lentic one. But the impacts are also prominent when beavers modify an 
existing lake. We identified DOC peaks in beaver-inhabited lakes (I). All our study lakes had 
fairly similar DOC concentrations prior to the beavers’ arrival. A DOC peak was seen during 
the first three beaver impoundment years, after which DOC returned back to its initial levels 
(Fig. 2). We observed a simultaneous but opposite effect with DO. During the first three 
impoundment years DO concentrations decreased significantly, but once the impoundment 
had lasted four to six years, DO returned back to its original concentrations. Similar changes 
did not occur in downstream non-beaver-inhabited lakes.  

 
Figure 2. DOC concentrations increase during the first three beaver-impoundment years. 
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Our study demonstrated the effect of damming by beavers and water level increase on the 
biogeochemical cycling of DOC. This phenomenon has previously been studied in stream 
systems, where entire ecosystems may shift from one to another (lotic to lentic). Similar 
alteration is seen in our study in an initially lentic ecosystem. Although the duration and 
extent of a beaver-created nutrient pulse is both relatively short (1–3 years) and local, beavers 
can play an important role in the carbon cycle from the perspective of a landscape and the 
entire boreal region.  

The DOC increase in beaver-inhabitated lakes is due to a rising water level, which 
releases organic carbon and nutrients from the soil and dying vegetation (Naiman et al. 1988; 
1994). Flooding enhances the biogeochemical fluxes by transporting elements across space, 
and providing conditions that enhance biogeochemical cycling rates (McClain et al. 2003). 
Beaver ponds have open water and are often a mosaic of varying vegetative structures. 
Beaver-inhabited lakes and ponds have a twofold effect on the carbon cycle. They, equally 
with other wetlands, emit carbon gases into the atmosphere (Roulet et al. 1997; Mitsch et al. 
2013), but can also store carbon into the bottom sediments (Wohl 2013; Johnston 2014). 
Beaver-pond deposits can be retained in pond sediments for thousands of years (Persico and 
Meyer 2013).   

The boreal region with its numerous wetlands (lakes and extensive peatlands) contain 
large stores of carbon and thus plays an important role in the global carbon cycle (Couture et 
al. 2012, Olefeldt et al. 2013; Moen et al. 2014). Most of the carbon in boreal lakes originates 
from terrestrial ecosystems (Sarvala et al. 1981; Arvola et al. 1990; Olefeldt et al. 2013) in 
the form of DOC. Our observation of a relatively short DOC peak indicates that the carbon 
from terrestrial ecosystems is transferred either to the atmosphere and/or into sediment 
storages. Additionally, the amount of organic carbon may be limited due to several factors, 
including changes in redox conditions and the decomposition rate of organic matter. The 
nature of these processes undoubtedly calls for further studies. 
 
 
Beavers modify the habitat structure of riparian forests 
 
Beavers kill trees by flooding and felling. Our study is the first to measure the amount of 
deadwood created by beavers. Our results show that beavers produce large amounts of 
deadwood, particularly some rare types (II). We compared the deadwood amounts of riparian 
forests surrounding beaver sites and non-beaver sites. Beaver sites had significantly higher 
amounts of deadwood compared to the other two riparian forest types. 

The beaver’s importance as a creator of deadwood was further emphasised with their 
ability to produce rare types of deadwood (Fig. 3). Snags, fine woody debris (< 10 cm) and 
deciduous deadwood are the rarest types of deadwood in currently heavily-managed boreal 
forests (Sippola et al. 1998; Ekbom et al. 2006; Rudolphi et al. 2011); these are the elements 
particularly created by beavers. Moreover, these rare types of deadwood are important for 
several deadwood-dependent and -associated species (Stokland et al. 2012). Another key 
feature to consider is that the deadwood created by beavers is generally moist, and beaver-
produced snags mostly stand in water. Their decomposition processes begin in fairly moist 
conditions, whereas the deadwood caused by other disturbances begin their decomposition 
as dry wood. This difference may be essential for deadwood-dependent species that live on 
moist deadwood and/or late decay stages (stages 4 and 5). In addition to the rare types of 
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deadwood, beaver foraging and building activities produce large amounts of snags that were 
not so evident in our results due to the transect lines, which were located mostly in water. 

Beavers, where they exist, are probably the main creators of stand-replacing disturbances 
in boreal riparian forests (Nummi and Kuuluvainen 2013). Floods kill trees over a long time 
period due to asphyxiation. Boreal tree species have different tolerances to asphyxiation and 
drowning, so some die almost immediately, while others may survive for several years 
(Nummi 1989). The cyclical nature of beaver occurrence, inhabiting, departing and returning 
to the original site, makes beavers continuous creators of deadwood. However, the effect of 
beaver lasts longer than the animal actually occupies a site. Dam collapse may take several 
years, and in addition beavers often return to the previous site, where wetland succession and 
deadwood creation will begin again.  

 
  
Figure 3. Deadwood types produced by different forest disturbances.  FWD = fine woody 
debris, CWD = coarse woody debris, DBH = diameter at breast height.  
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Beavers benefit aquatic and terrestrial biodiversity 
 
Beavers, as ecosystem engineers, are known to facilitate several species groups, such as water 
lice, ducks and bats (Nummi 1992; Nummi et al. 2011; Nummi and Holopainen 2014). 
Previous studies have shown the impact of beavers on groups of species that are dependent 
on or associated with aquatic ecosystems during certain periods in their lives. Generally 
speaking, prior to this thesis very little research has been conducted concerning beaver and 
deadwood organisms (bark beetles as pests, see Saarenmaa 1978), and no one has emphasised 
the biodiversity of organisms on beaver-created deadwood. Additionally, as frogs are 
associated with both aquatic and terrestrial systems and Finnish forests are heavily drained, 
I wished to study the effect of beavers on frogs in a fully drained landscape. 
 
Beaver-inhabited lakes increase anuran diversity 
 
Beaver wetlands have been shown to benefit frogs in Central Europe and North America 
(Dalbeck et al. 2007; Stevens et al. 2007). According to our study the situation appears similar 
in the boreal region. Beaver-inhabited lakes have higher anuran diversity than lakes and 
temporary ponds without beavers (III). Beavers particularly facilitate moor frogs, which 
favour more luxuriant habitats than common frogs (Rana temporaria; Linnaeus 1758) and 
common toads (Bufo bufo; Linnaeus 1758).   

Flooding by beavers creates shallow water areas, and organic materials and nutrients 
washed out from shores support the growth of algae, benthic vegetation and animals. In 
addition, felled trees increase open canopies, thereby offering enhanced conditions for 
photosynthesis. The increased light penetration along with the dark-colouration of the water 
elevate the water temperature of beaver wetlands. These environmental changes benefit 
anurans, because warm water accelerates the hatching, development and metamorphosis of 
tadpoles. Luxuriant aquatic vegetation provides cover for tadpoles and adult anurans against 
predators. Nutrients and organic material, on the other hand, promote phyto- and zooplankton 
abundances, as well as invertebrates, which are food for tadpoles and adult frogs. 

 DOC may aid the survival of anuran tadpoles (Banks et al. 2007). DOC is considered 
important to amphibians because it reduces light penetration into water, which in turn reduces 
the penetration of UV-B radiation and its harmful effects on eggs and tadpoles (Carpenter et 
al. 2001; Diamond et al. 2005). In other words, DOC peaks during the first three years of 
beaver impoundment (I) could benefit anuran reproduction.  

The depth features of beaver-created wetlands are typically versatile, with shallow and 
deeper water areas creating a mosaic structure, in addition, channels dug by beavers enhance 
the wetland area and act as dispersal corridors for amphibians (Anderson et al. 2015; Hood 
and Larson 2015). This increased habitat diversity makes them a suitable habitat for several 
anuran species. Common frogs prefer shallow habitats, whereas common toads prefer deeper 
ones. The moor frog is somewhere in between the two. Beaver wetlands can thus provide 
favourable habitats for the entire anuran community of Finland. 

Beavers’ actions clearly mitigate the negative impacts of draining. Beavers can create a 
wetland ecosystem in landscapes also containing drained areas, and the presence of moor 
frogs can be used to demonstrate the ecological significance of these wetlands. The moor 
frog is one of the EU directive species for inland waters, and an indicator of high quality 
ecosystems.   
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Caliciales hot spots in the boreal landscape 
 
Deadwood-associated pin lichens flourish in beaver-created snags (IV). From all the recorded 
species in the study, 87% inhabited beaver sites. Furthermore, half of the recorded species 
occupied one single, particularly species-rich beaver site. The suitability of beaver sites for 
pin lichens is fairly discernible. The beaver sites proportionately increased Evo’s regional 
pin lichen species pool by 62%. 

Most pin lichens found from beaver sites occurred on snags standing in water (IV). 
Surrounding water bodies influence the microclimate conditions of pin lichens. Tibell (1992) 
and Selva (2003) have previously shown that most pin lichens favour considerable humidity 
and canopy cover. The moist deadwood substrate could be a key factor explaining why 
organisms that normally favour old-forest habitats have become so abundant in a completely 
different environment. Water is not a limiting factor on moist deadwood, and the lack of 
canopy cover offers favourable light conditions. Pin lichens usually have to balance between 
light availability and desiccation risk, while both resources are ample in beaver wetlands.  

Beavers’ habitat expansion and dispersal across the landscape could benefit pin lichen 
dispersal. Beavers create a continuum of deadwood habitats, which allow pin lichens to 
disperse. Other deadwood-dependent species, such as beetles and woodpeckers, might aid 
the dispersion of pin lichens, because spores and propagules could attach to their feathers, 
surface structures and hairs. 
 
 
The location of beaver-created hot spots and hot moments shifts in the landscape 
 
Beavers cause large and structurally mediated modifications in the landscape that last longer 
than the animals actually inhabit the sites. Their effects, therefore, occur at different spatial 
and temporal scales. Because beavers are spatially mobile engineers, they can return to 
previously inhabited sites and re-engineer them in our study area in approximately ten-year 
cycles. Several simultaneous and overlapping beaver wetlands of different age classes might, 
therefore, concurrently exist in the landscape, thereby producing temporal and spatial 
heterogeneity (Fig. 4).  

The hot-spot phenomenon begins with a nutrient pulse in the early flood years (I), which 
leads to abundant plankton and invertebrate production (McDowell and Naiman 1986; 
Nummi 1989). Trees and other vegetation in the riparian zone (from 40 m to 100 m from the 
original shoreline of the wetland) concurrently begin to die. Conifers are the first to die. Some 
deciduous trees are more tolerant of flooding than others, but Salix species are usually the 
only deciduous trees to have survived after three impoundment years (Hyvönen and Nummi 
2008). Disappearance of the canopy provides an opportunity for wetland and aquatic 
vegetation. Gradual tree mortality produces high amounts of deadwood (II), some of which 
is not evident until the water level has lowered to almost its initial levels. Anurans live in 
both younger and older beaver wetlands (III). The benefits of beavers to anuran communities 
can be argued to begin early on and frogs additionally disperse without difficulty to newly 
established beaver sites. In contrast, pin lichen dispersal to beaver wetlands will probably 
take at least a few years. They will nevertheless have to wait for the deadwood substrate to 
be produced (IV). As a result, beavers significantly contribute to the biodiversity of the boreal 
region, and have the capacity to produce a mosaic landscape. 
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Figure 4. The population density of Evo’s beavers in the 1970s, 80s, 90s, 2000s and 2010s. 
Population density is presented according to Kernel density. The beavers’ mobility and 
wetland hot spot creation can be seen from the maps. Dark grey areas are beaver-induced 
biodiversity hot spots. (The Kernel density for the 2010s is not directly comparable to the other 
decades, because it only includes five years instead of 10.) 
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established beaver sites. In contrast, pin lichen dispersal to beaver wetlands will probably 
take at least a few years. They will nevertheless have to wait for the deadwood substrate to 
be produced (IV). As a result, beavers significantly contribute to the biodiversity of the boreal 
region, and have the capacity to produce a mosaic landscape. 
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CONCLUSIONS AND MANAGEMENT IMPLICATIONS 
 
 
This thesis provides new information of the beaver’s effects on wetland carbon cycling, 
riparian forest structure and biodiversity. It is evident that the impacts of beavers extend from 
aquatic to terrestrial ecosystems. Wetland science is considered a unique discipline including 
terrestrial and aquatic ecology, chemistry, hydrology and engineering (Mitsch and Gosselink 
2015). Wetlands can even be seen as a continuum between aquatic and terrestrial ecosystems, 
and are considered to increase hydrological connectivity in the landscape. Beavers seemingly 
alter wetland structure and conditions, which should be important when planning wetland 
restoration and conservation. Restoration projects should be aimed at identifying the 
providers of ecosystem services and biodiversity (Montoya et al. 2012). 

Although beavers have both positive and negative effects on environments, they can be 
seen as important ecosystem engineers. They provide limited resources for several organisms 
(e.g. ducks, frogs, pin lichens, bats) both through habitat amelioration and resource 
enhancement.  

Beaver wetlands were nearly absent throughout the Northern Hemisphere for several 
hundred years due to overhunting. Before their near extinction, 60–400 million beavers are 
estimated to have roamed North America (Seton 1929). An original population size estimate 
is missing for Europe, but would presumably be over ten million individuals. (This estimation 
is based on the following facts: a) there are 2.5 million and 500 000 wetlands in North 
America and Europe, respectively, so Europe’s wetland number is 20% of the wetlands in N. 
America, and; b) approximately 30 million beavers currently live in North America (~8–50% 
of the original population size of 60–400 million estimated by Seton in 1929), while over one 
million currently inhabit Europe. From this we can infer two possible estimates for original 
beaver population sizes in Europe: a) 60 x 0.2 = 12 and 400 x 0.2 = 80, which would give an 
estimate of 12–80 million, and; b) an estimate of 2–17 million, assuming Europe currently 
has a similar percentage of beavers left as North America compared to original numbers (8–
50%). An approximate value of 10 million beavers can then be estimated from these two 
valuations.)  

After a long period of absence, beavers have returned to many parts of their former range. 
Currently there are over one million beavers in Eurasia and ca. 30 million in North America 
(Halley et al. 2012; Whitfield et al. 2015). Although beaver populations are still far from 
initial levels, they are heading towards the situation preceding overhunting. The comeback 
of beavers has definitely benefitted wetland conservation. Along with the beavers’ increase, 
ca. 25 000 km2 of new aquatic wetland habitat and 550 000 km of riparian interface have 
been created (Whitfield et al. 2015). As beaver populations are increasing in both North 
America and Europe (Halley et al. 2012; Whitfield et al. 2015), it is feasible to take into 
account the possibility of populations becoming too dense in some regions. This has been the 
case with other large herbivores lacking a top predator (Ritchie et al. 2012). Beaver floods 
can damage for example forestry and infrastructure, and in addition, the landscape can 
become one-sided with over-dense beaver population. A management plan for beavers 
should contain the species’ value as an ecosystem engineer, but still aim to prevent potential 
conflicts caused by over-dense populations. 

Understanding the main drivers maintaining ecosystem processes and biodiversity is 
essential for wetland restoration and conservation. We can learn a lot from beavers. One 
alternative would be to mimic beavers, but using these ecosystem engineers as aids to 
ecological restoration and managing them along with wetland conservation would probably 
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be a better and more efficient way. Finland has implemented several wetland restoration 
projects during the last decade. The Life+ Return of Rural Wetlands, a recent well-funded 
(over 2 million euro) project, restored 47 wetlands in total. I argue that we could save 
conservation book-marked funds by just enhancing and conserving beaver-created wetlands. 
We could reintroduce European beavers to Finnish national parks and wilderness areas where 
it is currently extirpated, and concurrently we would contribute to our obligations dictated by 
the EU. 

The EU water framework directive aims to maintain and improve the ecological 
conditions of inland waters. Every member state has to make great efforts to ensure wetland 
conservation. The beaver is a potential tool for EU wetland conservation. The EU could 
implement the use of beavers in the inland water directive, and design a management plan 
for the species. As Montoya et al. (2012) suggest for restoration projects, it is feasible to 
target the reintroduction of dominant key species, and use these key species to restore 
biodiversity-based ecosystem functions.  
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