Typpioksiduuli (N2O) on kolmanneksi merkittävin ihmisperäinen kasvihuonekaasu ja sen pitoisuus ilmakehässä on kasvanut arvosta 273 ppb arvoon 336 ppb vuodesta 1800 lähtien pääasiassa maataloudessa käytettyjen lannoitteiden seurauksena. Viljeltyjen maatalousmaiden N2O-päästöt on laajasti tutkitut ja siten viimeaikainen tutkimus on kohdistunut yhä enemmän ravinnerikkaisiin arktisiin maaperiin. Valtaosa arktisista maaperistä on kuitenkin ravinneköyhiä ja niiden tyypillisesti alhaisia N2O-päästöjä säätelevät mekanismit tunnetaan edelleen puutteellisesti. Tämä väitöskirja syventää ymmärrystä pienistä N2O-päästöistä ravinneköyhässä ja erittäin heterogeenisessä arktisessa turvemaassa perustuen kolmen vuoden ajan tehtyihin toistettuihin manuaalisiin kammiomittauksiin sulan maan aikana.
Alhaisten N2O-voiden määrittämistä rajoittaa erityisesti mittausmenetelmien herkkyys. Tutkimuksessa arvioitiin uuden kannettavan kaasuanalysaattorin (Aeris MIRA Ultra N2O/CO2) suorituskykyä laboratorio- ja kenttäolosuhteissa ja sen todettiin soveltuvan manuaalisiin kammiomittauksiin arktisissa olosuhteissa. Lisäksi luotiin käytännön ohjeistus laitteen asetuksille ja kammiosulkeumien kestolle huomioiden tärkeyden mitata sekä valossa läpinäkyvillä että pimeässä läpinäkymättömillä kammioilla.
Tulokset osoittavat, että ravinneköyhä turvemaa toimii sulan maan aikana jatkuvana ja merkittävänä vaikkakin määrältään pienenä N2O-nieluna. Tämä on ensimmäinen in situ -havainto pysyvästä N2O-sidonnasta arktisissa turvemaissa. Lisäksi tunnistettiin paikallinen suuripäästöinen kohta, mikä osoittaa, että yksittäinen mittauspaikka voi muuttaa koko ekosysteemin N2O-taseen nielusta lähteeksi. Koneoppimismallit (random forest) osoittivat fotosynteettisesti aktiivisen säteilyn (PAR) ja ekosysteemin hiilidioksidin nettovaihdon keskeisiksi pieniä N2O-päästöjä sääteleviksi tekijöiksi. N2O-vaihdossa havaittiin systemaattisia eroja valoisan ja pimeän tilanteen välillä (Wilcoxonin testisuure = 0,37, p < 0,001).
Tutkimus tarjoaa vankan metodologisen perustan, jonka avulla pystytään löytämään N2O-nielun perustaso ja odottamattomia suuripäästöisiä kohtia sekä tunnistamaan keskeiset pieniä N2O-päästöjä säätelevät ympäristötekijät. Tulokset korostavat sekä toistettujen, parittain tehtyjen valo- ja pimeämittausten että riittävän alueellisen toiston merkitystä suuripäästöisten kohtien havaitsemiseksi vaihtelevissa arktisissa ekosysteemeissä. Havainnot ovat merkittäviä arktisten alueiden lisäksi myös muille ravinneköyhille ekosysteemeille maailmanlaajuisesti.
Prosessipohjaiset maaperän hiilimallit voivat simuloida pieniä, lyhytaikaisia muutoksia maaperän orgaanisen hiilen (SOC) varastoissa rekonstruoimalla maaperän CO2- ja CH4-päästöjen vasteen samanaikaisesti muuttuviin ympäristötekijöihin. Malleista puuttuu kuitenkin edelleen yhtenäinen teoria maaperän lämpötilan, kosteuden ja ravinnetilan vaikutuksista boreaalisissa ympäristöissä. Näin ollen jopa pieni systemaattinen virhe mallinnetuissa hetkellisissä maaperän CO2- ja CH4-päästöissä voi lisätä pitkän aikavälin SOC-varastojen ennusteiden vinoutuneisuutta.
Tutkimme ympäristötekijöitä, jotka säätelevät CO2- ja CH4-päästöjä ekosysteemien vaihettumisvyöhykkeellä Suomessa (metsä-suo-ekotonilla) kosteuden ja maaperän hiilen lisääntyessä (I ja II); maaperän CO2-päästöjä ja SOC-varastoja neljällä metsäalueella Suomessa (III); ja maaperän hiilen sitomista kansallisessa mittakaavassa käyttämällä vuoden 2020 metsäkoealoja Ruotsin kansallisesta metsämaaperäluettelosta (IV). CO2- ja CH4-päästöjä sekä SOC-varastoja säätelevät ympäristötekijät arvioitiin soveltamalla epälineaarista regressio- ja korrelaatioanalyysiä empiirisiin aineistoihin ja maaperän hiilimalleilla (Yasso07, Q ja CENTURY).
Metsä-suo-ekotonilla maaperän hiilidioksidipäästöjen hetkellistä vaihtelua selitti lähinnä maaperän lämpötila (eikä niinkään maaperän kosteus), mutta SOC-varastot korreloivat pitkäaikaisen kosteuden kanssa. Äärimmäisten sääilmiöiden aikana, kuten pitkittyneessä kesän kuivuudessa, maaperän CO2-päästöt mineraalimailla ja CH4-päästöt suoalueilla vähenivät merkittävästi. Siirtymässä metsästä suolle ei havaittu CO2- ja CH4-päästöjen erityistä aktiivisuutta. Hiilidioksidipäästöt olivat vertailukelpoisia metsä- ja suotyyppien välillä, mutta CH4-päästöt muuttuivat metsien pienistä nieluista suhteellisen suuriksi päästöiksi soilla. Soiden CH4-päästöt eivät kuitenkaan kompensoineet niiden CO2-nieluja. Ruotsalaisessa aineistossa metsien SOC-varastot kasvoivat selvästi kosteuden ja ravinnetilan ollessa korkeampia. Maaperän hiilimallit rekonstruoivat SOC-varastot hyvin mesotrofisille maaperille, mutta epäonnistuivat korkeamman hedelmällisyyden maaperille sekä kosteille maaperille, joissa oli turpeista humusta. Mitattujen ja mallinnettujen SOC-varastojen ja maaperän kausiluonteisten CO2-päästöjen vertailu osoitti, että arvioiden tarkkuus vaihteli suuresti riippuen siitä, millaiset hajoamiseen vaikuttavien ympäristötekijöiden matemaattiset muotoilut mallissa oli ja miten ne oli kalibroitu.
Mallinnustulosten epätarkkuudet osoittivat, että maaperän kosteuden ja ravinteikkuuden roolit boreaalisen metsämaaperän pitkäaikaisessa hiilen sitomisessa ovat matemaattisesti puutteellisesti edustettuina prosessipohjaisissa malleissa. Tämä johtaa sekä SOC-varastojen että kausiluonteisten CO2-päästöjen epäsuhtaan. Näiden vaikutusten uudelleenmuotoilu malleissa niin, että mikrobien ja entsyymien dynamiikka hajoamisen katalysaattoreina otettaisiin paremmin huomioon, parantaisi maaperän hiilimallien luotettavuutta ennustettaessa ilmastonmuutoksen vaikutuksia maaperään hiileen.